Valeria Turina, Zongshun Zhang, Flavio Esposito, I. Matta
{"title":"联合还是分裂?混合分离和联邦学习体系结构的性能和隐私分析","authors":"Valeria Turina, Zongshun Zhang, Flavio Esposito, I. Matta","doi":"10.1109/CLOUD53861.2021.00038","DOIUrl":null,"url":null,"abstract":"Mobile phones, wearable devices, and other sensors produce every day a large amount of distributed and sensitive data. Classical machine learning approaches process these large datasets usually on a single machine, training complex models to obtain useful predictions. To better preserve user and data privacy and at the same time guarantee high performance, distributed machine learning techniques such as Federated and Split Learning have been recently proposed. Both of these distributed learning architectures have merits but also drawbacks. In this work, we analyze such tradeoffs and propose a new hybrid Federated Split Learning architecture, to combine the benefits of both in terms of efficiency and privacy. Our evaluation shows how Federated Split Learning may reduce the computational power required for each client running a Federated Learning and enable Split Learning parallelization while maintaining a high prediction accuracy with unbalanced datasets during training. Furthermore, FSL provides a better accuracy-privacy tradeoff in specific privacy approaches compared to Parallel Split Learning.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"134 3 1","pages":"250-260"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Federated or Split? A Performance and Privacy Analysis of Hybrid Split and Federated Learning Architectures\",\"authors\":\"Valeria Turina, Zongshun Zhang, Flavio Esposito, I. Matta\",\"doi\":\"10.1109/CLOUD53861.2021.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile phones, wearable devices, and other sensors produce every day a large amount of distributed and sensitive data. Classical machine learning approaches process these large datasets usually on a single machine, training complex models to obtain useful predictions. To better preserve user and data privacy and at the same time guarantee high performance, distributed machine learning techniques such as Federated and Split Learning have been recently proposed. Both of these distributed learning architectures have merits but also drawbacks. In this work, we analyze such tradeoffs and propose a new hybrid Federated Split Learning architecture, to combine the benefits of both in terms of efficiency and privacy. Our evaluation shows how Federated Split Learning may reduce the computational power required for each client running a Federated Learning and enable Split Learning parallelization while maintaining a high prediction accuracy with unbalanced datasets during training. Furthermore, FSL provides a better accuracy-privacy tradeoff in specific privacy approaches compared to Parallel Split Learning.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"134 3 1\",\"pages\":\"250-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD53861.2021.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD53861.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Federated or Split? A Performance and Privacy Analysis of Hybrid Split and Federated Learning Architectures
Mobile phones, wearable devices, and other sensors produce every day a large amount of distributed and sensitive data. Classical machine learning approaches process these large datasets usually on a single machine, training complex models to obtain useful predictions. To better preserve user and data privacy and at the same time guarantee high performance, distributed machine learning techniques such as Federated and Split Learning have been recently proposed. Both of these distributed learning architectures have merits but also drawbacks. In this work, we analyze such tradeoffs and propose a new hybrid Federated Split Learning architecture, to combine the benefits of both in terms of efficiency and privacy. Our evaluation shows how Federated Split Learning may reduce the computational power required for each client running a Federated Learning and enable Split Learning parallelization while maintaining a high prediction accuracy with unbalanced datasets during training. Furthermore, FSL provides a better accuracy-privacy tradeoff in specific privacy approaches compared to Parallel Split Learning.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)