Landau-Ginzburg模型的奇异对数Calabi-Yau紧化

Pub Date : 2021-02-02 DOI:10.1070/SM9510
V. Przyjalkowski
{"title":"Landau-Ginzburg模型的奇异对数Calabi-Yau紧化","authors":"V. Przyjalkowski","doi":"10.1070/SM9510","DOIUrl":null,"url":null,"abstract":"We consider the procedure that constructs log Calabi-Yau compactifications of weak Landau-Ginzburg models of Fano varieties. We apply it to del Pezzo surfaces and coverings of projective spaces of index . For coverings of degree greater than the log Calabi-Yau compactification is singular; moreover, no smooth projective log Calabi-Yau compactification exists. We also prove, in the cases under consideration, the conjecture that the number of components of the fibre over infinity is equal to the dimension of an anticanonical system of the Fano variety. Bibliography: 46 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On singular log Calabi-Yau compactifications of Landau-Ginzburg models\",\"authors\":\"V. Przyjalkowski\",\"doi\":\"10.1070/SM9510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the procedure that constructs log Calabi-Yau compactifications of weak Landau-Ginzburg models of Fano varieties. We apply it to del Pezzo surfaces and coverings of projective spaces of index . For coverings of degree greater than the log Calabi-Yau compactification is singular; moreover, no smooth projective log Calabi-Yau compactification exists. We also prove, in the cases under consideration, the conjecture that the number of components of the fibre over infinity is equal to the dimension of an anticanonical system of the Fano variety. Bibliography: 46 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/SM9510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑了构建Fano品种弱Landau-Ginzburg模型的log Calabi-Yau紧化过程。我们将其应用于del Pezzo曲面和指数投影空间的覆盖。对于大于对数次的覆盖物,Calabi-Yau紧化是奇异的;此外,不存在光滑射影对数Calabi-Yau紧化。在考虑的情况下,我们还证明了在无穷远处纤维的组分数等于法诺变种的反正则系统的维数的猜想。参考书目:46篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On singular log Calabi-Yau compactifications of Landau-Ginzburg models
We consider the procedure that constructs log Calabi-Yau compactifications of weak Landau-Ginzburg models of Fano varieties. We apply it to del Pezzo surfaces and coverings of projective spaces of index . For coverings of degree greater than the log Calabi-Yau compactification is singular; moreover, no smooth projective log Calabi-Yau compactification exists. We also prove, in the cases under consideration, the conjecture that the number of components of the fibre over infinity is equal to the dimension of an anticanonical system of the Fano variety. Bibliography: 46 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信