{"title":"新型RGO-ZnWO4-Fe3O4电极材料在储能器件中的应用","authors":"M. Sadiq, P. Kalaignan","doi":"10.11648/J.IJMSA.20190806.13","DOIUrl":null,"url":null,"abstract":"As the global concerns in the development of human civilization, the scientific and technological issues of energy utilization and environment protection are currently facing challenges. Nowadays, enormous energy demands of the world are mainly met by the non-renewable and environmental unfriendly fossil fuels. To replace the conventional energy platform, a pursuit of renewable and clean energy sources and carriers, including hydrogen storage, lithium batteries, and supercapacitors. Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. Herein, we report novel RGO-ZnWO4-Fe3O4 electrodes material can be synthesized using one step microwave irradiation technique and reported as an electrode material for supercapacitors applications. The surface morphology, chemical composition and electronic structure of the RGO-ZnWO4-Fe3O4 electrodes were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performance of the RGO-ZnWO4-Fe3O4 electrodes has been investigated using cyclic voltammetry (CV) techniques. The result reveals that a specific capacitance of 480 F/g, an energy density of 15 Wh/kg and power density of 1719.5 W/kg is observed over RGO-ZnWO4-Fe3O4 electrodes materials. The cost effective electrodes materials of RGO-ZnWO4-Fe3O4 can be useful for future electrochemical energy storage device applications.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel RGO-ZnWO4-Fe3O4 Electrodes Material for Energy Storage Device Applications\",\"authors\":\"M. Sadiq, P. Kalaignan\",\"doi\":\"10.11648/J.IJMSA.20190806.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the global concerns in the development of human civilization, the scientific and technological issues of energy utilization and environment protection are currently facing challenges. Nowadays, enormous energy demands of the world are mainly met by the non-renewable and environmental unfriendly fossil fuels. To replace the conventional energy platform, a pursuit of renewable and clean energy sources and carriers, including hydrogen storage, lithium batteries, and supercapacitors. Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. Herein, we report novel RGO-ZnWO4-Fe3O4 electrodes material can be synthesized using one step microwave irradiation technique and reported as an electrode material for supercapacitors applications. The surface morphology, chemical composition and electronic structure of the RGO-ZnWO4-Fe3O4 electrodes were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performance of the RGO-ZnWO4-Fe3O4 electrodes has been investigated using cyclic voltammetry (CV) techniques. The result reveals that a specific capacitance of 480 F/g, an energy density of 15 Wh/kg and power density of 1719.5 W/kg is observed over RGO-ZnWO4-Fe3O4 electrodes materials. The cost effective electrodes materials of RGO-ZnWO4-Fe3O4 can be useful for future electrochemical energy storage device applications.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMSA.20190806.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20190806.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel RGO-ZnWO4-Fe3O4 Electrodes Material for Energy Storage Device Applications
As the global concerns in the development of human civilization, the scientific and technological issues of energy utilization and environment protection are currently facing challenges. Nowadays, enormous energy demands of the world are mainly met by the non-renewable and environmental unfriendly fossil fuels. To replace the conventional energy platform, a pursuit of renewable and clean energy sources and carriers, including hydrogen storage, lithium batteries, and supercapacitors. Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. Herein, we report novel RGO-ZnWO4-Fe3O4 electrodes material can be synthesized using one step microwave irradiation technique and reported as an electrode material for supercapacitors applications. The surface morphology, chemical composition and electronic structure of the RGO-ZnWO4-Fe3O4 electrodes were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performance of the RGO-ZnWO4-Fe3O4 electrodes has been investigated using cyclic voltammetry (CV) techniques. The result reveals that a specific capacitance of 480 F/g, an energy density of 15 Wh/kg and power density of 1719.5 W/kg is observed over RGO-ZnWO4-Fe3O4 electrodes materials. The cost effective electrodes materials of RGO-ZnWO4-Fe3O4 can be useful for future electrochemical energy storage device applications.