利用黑曲霉合成氧化锌纳米颗粒及其表征

A. Shamim, T. Mahmood, Monis Bin Abid
{"title":"利用黑曲霉合成氧化锌纳米颗粒及其表征","authors":"A. Shamim, T. Mahmood, Monis Bin Abid","doi":"10.5539/ijc.v11n2p119","DOIUrl":null,"url":null,"abstract":"Nanoparticles are ultrafine structures with dimensions less than 100 nm. Nanoparticles have diverse applications. There are three important methods of fabrication of nanoparticles namely physical, chemical and biological methods. Physical method is a top down strategy for the fabrication of nanoparticles. It is energy intensive and time consuming. A chemical method is simple, but is expensive and requires expensive chemicals with high purity and also involves hazards of contaminations. Biological synthesis is very simple, cheap and environment friendly, requiring no expensive chemicals, temperature and is time saving. Plants and microorganisms are commonly used in this method. These are available everywhere. In the present work we synthesized Zinc Oxide (ZnO) nanoparticles by biological method using Aspargillus niger and zinc chloride (ZnCl2) as precursors. Biogenic synthesis of metallic nanoparticles by fungi is a safe and economical process because of formation of stable and small sized nanoparticles. Fungal biomass secretes proteins which act as reducing and stabilizing agents. The synthesized nanoparticles were characterized by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), UV-Vis (Ultraviolet, Visible) and EDX (Energy Dispersive X-Ray) techniques. Their size was in nm range and morphology of synthesized ZnO NPs was hexagonal. The ZnO nanoparticles are one of the most versatile materials and are used in cosmetics and in Bioenergy production, as a catalyst and as antibacterial material.","PeriodicalId":13866,"journal":{"name":"International Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Biogenic Synthesis of Zinc Oxide (ZnO) Nanoparticles Using a Fungus (Aspargillus niger) and Their Characterization\",\"authors\":\"A. Shamim, T. Mahmood, Monis Bin Abid\",\"doi\":\"10.5539/ijc.v11n2p119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles are ultrafine structures with dimensions less than 100 nm. Nanoparticles have diverse applications. There are three important methods of fabrication of nanoparticles namely physical, chemical and biological methods. Physical method is a top down strategy for the fabrication of nanoparticles. It is energy intensive and time consuming. A chemical method is simple, but is expensive and requires expensive chemicals with high purity and also involves hazards of contaminations. Biological synthesis is very simple, cheap and environment friendly, requiring no expensive chemicals, temperature and is time saving. Plants and microorganisms are commonly used in this method. These are available everywhere. In the present work we synthesized Zinc Oxide (ZnO) nanoparticles by biological method using Aspargillus niger and zinc chloride (ZnCl2) as precursors. Biogenic synthesis of metallic nanoparticles by fungi is a safe and economical process because of formation of stable and small sized nanoparticles. Fungal biomass secretes proteins which act as reducing and stabilizing agents. The synthesized nanoparticles were characterized by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), UV-Vis (Ultraviolet, Visible) and EDX (Energy Dispersive X-Ray) techniques. Their size was in nm range and morphology of synthesized ZnO NPs was hexagonal. The ZnO nanoparticles are one of the most versatile materials and are used in cosmetics and in Bioenergy production, as a catalyst and as antibacterial material.\",\"PeriodicalId\":13866,\"journal\":{\"name\":\"International Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ijc.v11n2p119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijc.v11n2p119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

纳米粒子是尺寸小于100纳米的超细结构。纳米粒子有多种用途。纳米颗粒的制备有三种主要方法:物理方法、化学方法和生物方法。物理方法是一种自上而下的纳米颗粒制备方法。它是能源密集和耗时的。化学方法简单,但价格昂贵,需要昂贵的高纯度化学品,而且有污染的危险。生物合成非常简单、廉价和环保,不需要昂贵的化学品、温度和节省时间。植物和微生物通常用于这种方法。这些都是随处可见的。本文以黑曲霉和氯化锌为前体,采用生物法制备了氧化锌纳米颗粒。利用真菌生物合成金属纳米粒子是一种安全、经济的方法,因为它可以形成稳定、小尺寸的纳米粒子。真菌生物量分泌蛋白质,作为还原剂和稳定剂。采用XRD (x射线衍射)、SEM(扫描电子显微镜)、UV-Vis(紫外、可见)和EDX(能量色散x射线)技术对合成的纳米颗粒进行了表征。它们的尺寸在nm范围内,合成的ZnO NPs形貌为六边形。氧化锌纳米颗粒是最通用的材料之一,用于化妆品和生物能源生产,作为催化剂和抗菌材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biogenic Synthesis of Zinc Oxide (ZnO) Nanoparticles Using a Fungus (Aspargillus niger) and Their Characterization
Nanoparticles are ultrafine structures with dimensions less than 100 nm. Nanoparticles have diverse applications. There are three important methods of fabrication of nanoparticles namely physical, chemical and biological methods. Physical method is a top down strategy for the fabrication of nanoparticles. It is energy intensive and time consuming. A chemical method is simple, but is expensive and requires expensive chemicals with high purity and also involves hazards of contaminations. Biological synthesis is very simple, cheap and environment friendly, requiring no expensive chemicals, temperature and is time saving. Plants and microorganisms are commonly used in this method. These are available everywhere. In the present work we synthesized Zinc Oxide (ZnO) nanoparticles by biological method using Aspargillus niger and zinc chloride (ZnCl2) as precursors. Biogenic synthesis of metallic nanoparticles by fungi is a safe and economical process because of formation of stable and small sized nanoparticles. Fungal biomass secretes proteins which act as reducing and stabilizing agents. The synthesized nanoparticles were characterized by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), UV-Vis (Ultraviolet, Visible) and EDX (Energy Dispersive X-Ray) techniques. Their size was in nm range and morphology of synthesized ZnO NPs was hexagonal. The ZnO nanoparticles are one of the most versatile materials and are used in cosmetics and in Bioenergy production, as a catalyst and as antibacterial material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信