一种新的跨时超声流量测量数学模型

L. Kang, A. Feeney, W. Somerset, Ri-liang Su, D. Lines, S. Ramadas, S. Dixon
{"title":"一种新的跨时超声流量测量数学模型","authors":"L. Kang, A. Feeney, W. Somerset, Ri-liang Su, D. Lines, S. Ramadas, S. Dixon","doi":"10.1109/ULTSYM.2019.8925693","DOIUrl":null,"url":null,"abstract":"The calculation of the averaged flow velocity along an ultrasonic path is the core step in ultrasonic transit-time flow measurement. The conventional model for calculating the path-averaged velocity does not consider the influence of the flow velocity on the propagation direction of the ultrasonic wave and can introduce error when the sound speed is not much greater than the flow velocity. To solve this problem, a new mathematical model covering the influence of the flow velocity is proposed. It has been found that the same mathematical expressions of the path-averaged flow velocity, as a function of the absolute time-of-flight (ToFs) of ultrasonic waves travelling upstream and downstream, can be derived based on either of the models. However, the expressions as a function of the time difference (the relative ToF) between the ultrasonic waves travelling upstream and downstream derived by the two models are completely different. Flow tests are conducted in a calibrated flow rig utilising air as flowing medium. Experimental results demonstrate that the path-averaged flow velocities, calculated using either the relative or the absolute ToFs based on the new model, are much more consistent and stable, whereas those calculated based on the conventional model have shown evident and increasing discrepancy when the flow velocity exceeds 15 m/s. When the flow velocity is around 39.45 m/s, the discrepancy is as high as 0.38 m/s. As the relative ToF can be more accurately, reliably and conveniently measured in real applications, the proposed mathematical model has a great potential for the increase of the accuracy of the ultrasonic transit-time flowmeters, especially for the applications such as the measurement of fluids with high flow velocities.","PeriodicalId":6759,"journal":{"name":"2019 IEEE International Ultrasonics Symposium (IUS)","volume":"78 1","pages":"1590-1593"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Mathematical Model for Transit-time Ultrasonic Flow Measurement\",\"authors\":\"L. Kang, A. Feeney, W. Somerset, Ri-liang Su, D. Lines, S. Ramadas, S. Dixon\",\"doi\":\"10.1109/ULTSYM.2019.8925693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The calculation of the averaged flow velocity along an ultrasonic path is the core step in ultrasonic transit-time flow measurement. The conventional model for calculating the path-averaged velocity does not consider the influence of the flow velocity on the propagation direction of the ultrasonic wave and can introduce error when the sound speed is not much greater than the flow velocity. To solve this problem, a new mathematical model covering the influence of the flow velocity is proposed. It has been found that the same mathematical expressions of the path-averaged flow velocity, as a function of the absolute time-of-flight (ToFs) of ultrasonic waves travelling upstream and downstream, can be derived based on either of the models. However, the expressions as a function of the time difference (the relative ToF) between the ultrasonic waves travelling upstream and downstream derived by the two models are completely different. Flow tests are conducted in a calibrated flow rig utilising air as flowing medium. Experimental results demonstrate that the path-averaged flow velocities, calculated using either the relative or the absolute ToFs based on the new model, are much more consistent and stable, whereas those calculated based on the conventional model have shown evident and increasing discrepancy when the flow velocity exceeds 15 m/s. When the flow velocity is around 39.45 m/s, the discrepancy is as high as 0.38 m/s. As the relative ToF can be more accurately, reliably and conveniently measured in real applications, the proposed mathematical model has a great potential for the increase of the accuracy of the ultrasonic transit-time flowmeters, especially for the applications such as the measurement of fluids with high flow velocities.\",\"PeriodicalId\":6759,\"journal\":{\"name\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"volume\":\"78 1\",\"pages\":\"1590-1593\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2019.8925693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2019.8925693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超声传输时流量测量的核心步骤是计算超声路径上的平均流速。传统的路径平均速度计算模型没有考虑流速对超声波传播方向的影响,在声速不大于流速的情况下会引入误差。为了解决这一问题,提出了一种新的包含流速影响的数学模型。研究发现,在这两种模型的基础上,可以推导出相同的路径平均流速的数学表达式,即超声波在上游和下游传播的绝对飞行时间的函数。但是,两种模型得到的超声波上下行时差(相对ToF)的函数表达式是完全不同的。流动试验是在一个校准的流动装置中进行的,利用空气作为流动介质。实验结果表明,基于新模型的相对tof和绝对tof计算的路径平均流速更加一致和稳定,而当流速超过15 m/s时,基于常规模型计算的路径平均流速差异明显且越来越大。当流速在39.45 m/s左右时,差异高达0.38 m/s。由于在实际应用中可以更加准确、可靠和方便地测量相对ToF,因此所提出的数学模型对于提高超声波透射时间流量计的精度,特别是在测量高流速流体等应用中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Mathematical Model for Transit-time Ultrasonic Flow Measurement
The calculation of the averaged flow velocity along an ultrasonic path is the core step in ultrasonic transit-time flow measurement. The conventional model for calculating the path-averaged velocity does not consider the influence of the flow velocity on the propagation direction of the ultrasonic wave and can introduce error when the sound speed is not much greater than the flow velocity. To solve this problem, a new mathematical model covering the influence of the flow velocity is proposed. It has been found that the same mathematical expressions of the path-averaged flow velocity, as a function of the absolute time-of-flight (ToFs) of ultrasonic waves travelling upstream and downstream, can be derived based on either of the models. However, the expressions as a function of the time difference (the relative ToF) between the ultrasonic waves travelling upstream and downstream derived by the two models are completely different. Flow tests are conducted in a calibrated flow rig utilising air as flowing medium. Experimental results demonstrate that the path-averaged flow velocities, calculated using either the relative or the absolute ToFs based on the new model, are much more consistent and stable, whereas those calculated based on the conventional model have shown evident and increasing discrepancy when the flow velocity exceeds 15 m/s. When the flow velocity is around 39.45 m/s, the discrepancy is as high as 0.38 m/s. As the relative ToF can be more accurately, reliably and conveniently measured in real applications, the proposed mathematical model has a great potential for the increase of the accuracy of the ultrasonic transit-time flowmeters, especially for the applications such as the measurement of fluids with high flow velocities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信