大规模计算约束最短路径

Oper. Res. Pub Date : 2021-11-30 DOI:10.1287/opre.2021.2166
Alberto Vera, Siddhartha Banerjee, S. Samaranayake
{"title":"大规模计算约束最短路径","authors":"Alberto Vera, Siddhartha Banerjee, S. Samaranayake","doi":"10.1287/opre.2021.2166","DOIUrl":null,"url":null,"abstract":"Motivated by the needs of modern transportation service platforms, we study the problem of computing constrained shortest paths (CSP) at scale via preprocessing techniques. Our work makes two contributions in this regard: 1) We propose a scalable algorithm for CSP queries and show how its performance can be parametrized in terms of a new network primitive, the constrained highway dimension. This development extends recent work that established the highway dimension as the appropriate primitive for characterizing the performance of unconstrained shortest-path (SP) algorithms. Our main theoretical contribution is deriving conditions relating the two notions, thereby providing a characterization of networks where CSP and SP queries are of comparable hardness. 2) We develop practical algorithms for scalable CSP computation, augmenting our theory with additional network clustering heuristics. We evaluate these algorithms on real-world data sets to validate our theoretical findings. Our techniques are orders of magnitude faster than existing approaches while requiring only limited additional storage and preprocessing.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"16 11 1","pages":"160-178"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computing Constrained Shortest-Paths at Scale\",\"authors\":\"Alberto Vera, Siddhartha Banerjee, S. Samaranayake\",\"doi\":\"10.1287/opre.2021.2166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the needs of modern transportation service platforms, we study the problem of computing constrained shortest paths (CSP) at scale via preprocessing techniques. Our work makes two contributions in this regard: 1) We propose a scalable algorithm for CSP queries and show how its performance can be parametrized in terms of a new network primitive, the constrained highway dimension. This development extends recent work that established the highway dimension as the appropriate primitive for characterizing the performance of unconstrained shortest-path (SP) algorithms. Our main theoretical contribution is deriving conditions relating the two notions, thereby providing a characterization of networks where CSP and SP queries are of comparable hardness. 2) We develop practical algorithms for scalable CSP computation, augmenting our theory with additional network clustering heuristics. We evaluate these algorithms on real-world data sets to validate our theoretical findings. Our techniques are orders of magnitude faster than existing approaches while requiring only limited additional storage and preprocessing.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"16 11 1\",\"pages\":\"160-178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2021.2166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

受现代交通服务平台需求的驱动,我们通过预处理技术研究了大规模计算约束最短路径(CSP)的问题。我们的工作在这方面做出了两个贡献:1)我们提出了一种可扩展的CSP查询算法,并展示了如何根据一个新的网络原语(约束高速公路维度)来参数化其性能。这一发展扩展了最近的工作,该工作将高速公路维度作为描述无约束最短路径(SP)算法性能的适当原语。我们的主要理论贡献是推导了两个概念相关的条件,从而提供了CSP和SP查询具有可比硬度的网络的特征。2)我们开发了可扩展CSP计算的实用算法,用额外的网络聚类启发式来增强我们的理论。我们在真实世界的数据集上评估这些算法,以验证我们的理论发现。我们的技术比现有的方法快几个数量级,同时只需要有限的额外存储和预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Constrained Shortest-Paths at Scale
Motivated by the needs of modern transportation service platforms, we study the problem of computing constrained shortest paths (CSP) at scale via preprocessing techniques. Our work makes two contributions in this regard: 1) We propose a scalable algorithm for CSP queries and show how its performance can be parametrized in terms of a new network primitive, the constrained highway dimension. This development extends recent work that established the highway dimension as the appropriate primitive for characterizing the performance of unconstrained shortest-path (SP) algorithms. Our main theoretical contribution is deriving conditions relating the two notions, thereby providing a characterization of networks where CSP and SP queries are of comparable hardness. 2) We develop practical algorithms for scalable CSP computation, augmenting our theory with additional network clustering heuristics. We evaluate these algorithms on real-world data sets to validate our theoretical findings. Our techniques are orders of magnitude faster than existing approaches while requiring only limited additional storage and preprocessing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信