Ji-Ming Guo, Gege Zhang, Zhiwen Wang, Pan-Pan Tong
{"title":"单环图的最小特征值及其在谱扩展中的应用","authors":"Ji-Ming Guo, Gege Zhang, Zhiwen Wang, Pan-Pan Tong","doi":"10.1142/s1005386722000219","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be the set of connected unicyclic graphs of order [Formula: see text] and girth [Formula: see text]. Let [Formula: see text] be obtained from a cycle [Formula: see text] (in an anticlockwise direction) by identifying [Formula: see text] with the root of a rooted tree [Formula: see text] of order [Formula: see text] for each [Formula: see text], where [Formula: see text] and [Formula: see text]. In this note, the graph with the minimal least eigenvalue (and the graph with maximal spread) in [Formula: see text] is determined.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Least Eigenvalue of Unicyclic Graphs with Application to Spectral Spread\",\"authors\":\"Ji-Ming Guo, Gege Zhang, Zhiwen Wang, Pan-Pan Tong\",\"doi\":\"10.1142/s1005386722000219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be the set of connected unicyclic graphs of order [Formula: see text] and girth [Formula: see text]. Let [Formula: see text] be obtained from a cycle [Formula: see text] (in an anticlockwise direction) by identifying [Formula: see text] with the root of a rooted tree [Formula: see text] of order [Formula: see text] for each [Formula: see text], where [Formula: see text] and [Formula: see text]. In this note, the graph with the minimal least eigenvalue (and the graph with maximal spread) in [Formula: see text] is determined.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000219\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000219","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Least Eigenvalue of Unicyclic Graphs with Application to Spectral Spread
Let [Formula: see text] be the set of connected unicyclic graphs of order [Formula: see text] and girth [Formula: see text]. Let [Formula: see text] be obtained from a cycle [Formula: see text] (in an anticlockwise direction) by identifying [Formula: see text] with the root of a rooted tree [Formula: see text] of order [Formula: see text] for each [Formula: see text], where [Formula: see text] and [Formula: see text]. In this note, the graph with the minimal least eigenvalue (and the graph with maximal spread) in [Formula: see text] is determined.
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.