强自旋-轨道耦合情况下安德森局域化的四维展开

S. Hikami
{"title":"强自旋-轨道耦合情况下安德森局域化的四维展开","authors":"S. Hikami","doi":"10.1051/JPHYSLET:019850046016071900","DOIUrl":null,"url":null,"abstract":"The problem of Anderson localization in a strong spin-orbit coupling case is studied by using a gauge invariant matrix model in e=4-d expansion. An infrared stable fixed point is present and this model belongs to the same universal class as a nonlinear σ model. An expression for the critical exponent of conductivity is obtained in the first order of the e-expansion Etude de cette localisation a l'aide d'un modele matriciel a invariance de jauge: presence d'un point fixe stable dans l'IR et appartenance du modele a la meme classe d'universalite que le modele σ non lineaire. Expression pour l'exposant de la conductivite au 1er ordre en e","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"56 1","pages":"719-722"},"PeriodicalIF":0.0000,"publicationDate":"1985-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"4 — d expansion for Anderson localization in a strong spin-orbit coupling case\",\"authors\":\"S. Hikami\",\"doi\":\"10.1051/JPHYSLET:019850046016071900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of Anderson localization in a strong spin-orbit coupling case is studied by using a gauge invariant matrix model in e=4-d expansion. An infrared stable fixed point is present and this model belongs to the same universal class as a nonlinear σ model. An expression for the critical exponent of conductivity is obtained in the first order of the e-expansion Etude de cette localisation a l'aide d'un modele matriciel a invariance de jauge: presence d'un point fixe stable dans l'IR et appartenance du modele a la meme classe d'universalite que le modele σ non lineaire. Expression pour l'exposant de la conductivite au 1er ordre en e\",\"PeriodicalId\":14822,\"journal\":{\"name\":\"Journal De Physique Lettres\",\"volume\":\"56 1\",\"pages\":\"719-722\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Lettres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYSLET:019850046016071900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046016071900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在e=4维展开中,利用规范不变矩阵模型研究了强自旋-轨道耦合情况下的Anderson局域化问题。存在一个红外稳定不动点,该模型与非线性σ模型属于同一泛类。得到了电导率的临界指数的一阶表达式,该表达式是由e-展开的关于局部化和不变性的模型矩阵的一阶表达式表示的:存在点固定稳定的模型矩阵的存在点固定稳定的模型矩阵的存在点固定稳定的模型矩阵的存在点。表达式为“1”,表示“1”,表示“1”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4 — d expansion for Anderson localization in a strong spin-orbit coupling case
The problem of Anderson localization in a strong spin-orbit coupling case is studied by using a gauge invariant matrix model in e=4-d expansion. An infrared stable fixed point is present and this model belongs to the same universal class as a nonlinear σ model. An expression for the critical exponent of conductivity is obtained in the first order of the e-expansion Etude de cette localisation a l'aide d'un modele matriciel a invariance de jauge: presence d'un point fixe stable dans l'IR et appartenance du modele a la meme classe d'universalite que le modele σ non lineaire. Expression pour l'exposant de la conductivite au 1er ordre en e
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信