一种计算二维流形的新方法

Hengyi Sun, Yangyu Fan, Jing Zhang, Huimin Li, M. Jia
{"title":"一种计算二维流形的新方法","authors":"Hengyi Sun, Yangyu Fan, Jing Zhang, Huimin Li, M. Jia","doi":"10.1109/ICIST.2011.5765251","DOIUrl":null,"url":null,"abstract":"We propose an approach to computing two-dimensional unstable and stable manifolds of three-dimensional vector fields. The main idea is to estimate normal direction on each point around the boundary of current loop of manifold and normalize the normal growth rate during a settled time step to counter the disequilibrium in different directions. In order to enhance the reliability of our approach, linear and nonlinear conditions are considered. It is necessary to state that the time step should be appropriately small to meet the adjacent intervals of points on the boundary of manifold. As example we compute the two-dimensional stable manifold of the origin in Lorenz system. Both successes and shortcomings of our method are presented.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"25 1","pages":"267-269"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach to computing two-dimensional manifolds\",\"authors\":\"Hengyi Sun, Yangyu Fan, Jing Zhang, Huimin Li, M. Jia\",\"doi\":\"10.1109/ICIST.2011.5765251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach to computing two-dimensional unstable and stable manifolds of three-dimensional vector fields. The main idea is to estimate normal direction on each point around the boundary of current loop of manifold and normalize the normal growth rate during a settled time step to counter the disequilibrium in different directions. In order to enhance the reliability of our approach, linear and nonlinear conditions are considered. It is necessary to state that the time step should be appropriately small to meet the adjacent intervals of points on the boundary of manifold. As example we compute the two-dimensional stable manifold of the origin in Lorenz system. Both successes and shortcomings of our method are presented.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"25 1\",\"pages\":\"267-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种计算三维矢量场的二维不稳定流形和稳定流形的方法。其主要思想是在流形电流环边界附近的每个点上估计法向,并对固定时间步长的法向增长率进行归一化,以抵消不同方向上的不平衡。为了提高方法的可靠性,考虑了线性和非线性条件。需要说明的是,时间步长应适当小,以满足流形边界上点的相邻间隔。作为例子,我们计算了洛伦兹系统中原点的二维稳定流形。本文介绍了该方法的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach to computing two-dimensional manifolds
We propose an approach to computing two-dimensional unstable and stable manifolds of three-dimensional vector fields. The main idea is to estimate normal direction on each point around the boundary of current loop of manifold and normalize the normal growth rate during a settled time step to counter the disequilibrium in different directions. In order to enhance the reliability of our approach, linear and nonlinear conditions are considered. It is necessary to state that the time step should be appropriately small to meet the adjacent intervals of points on the boundary of manifold. As example we compute the two-dimensional stable manifold of the origin in Lorenz system. Both successes and shortcomings of our method are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信