具有时滞的股票市场离散动态模型的稳定性

L. Dobrescu, M. Neamţu, D. Opris
{"title":"具有时滞的股票市场离散动态模型的稳定性","authors":"L. Dobrescu, M. Neamţu, D. Opris","doi":"10.2139/ssrn.1987871","DOIUrl":null,"url":null,"abstract":"The time evolution of prices and savings in a stock market is modeled by a discrete-delay nonlinear dynamic system. The proposed model has a unique and unstable steady-state, so its time evolution is determined by the nonlinear effects acting out of the equilibrium. We perform the analysis of the linear approximation through the study of the eigenvalues of the Jacobian matrix in order to characterize the local stability properties and the local bifurcations in the parameter space. If the delay is equal to zero, Lyapunov exponents are calculated. For certain values of the parameters, we prove that the system has a chaotic behaviour. The discrete nonlinear model is associated with a discrete stochastic model. For the liniarization of this model, we establish the conditions for which the mean and quadratic mean values of the state variables are asymptotically stable. Some numerical examples are finally given to justify the theoretical results.","PeriodicalId":23435,"journal":{"name":"UNSW Business School Research Paper Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability in a Discrete-Time Dynamic Model with Delay for a Stock Market\",\"authors\":\"L. Dobrescu, M. Neamţu, D. Opris\",\"doi\":\"10.2139/ssrn.1987871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time evolution of prices and savings in a stock market is modeled by a discrete-delay nonlinear dynamic system. The proposed model has a unique and unstable steady-state, so its time evolution is determined by the nonlinear effects acting out of the equilibrium. We perform the analysis of the linear approximation through the study of the eigenvalues of the Jacobian matrix in order to characterize the local stability properties and the local bifurcations in the parameter space. If the delay is equal to zero, Lyapunov exponents are calculated. For certain values of the parameters, we prove that the system has a chaotic behaviour. The discrete nonlinear model is associated with a discrete stochastic model. For the liniarization of this model, we establish the conditions for which the mean and quadratic mean values of the state variables are asymptotically stable. Some numerical examples are finally given to justify the theoretical results.\",\"PeriodicalId\":23435,\"journal\":{\"name\":\"UNSW Business School Research Paper Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UNSW Business School Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1987871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNSW Business School Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1987871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用离散时滞非线性动态系统对股票市场中价格和储蓄的时间演化进行建模。该模型具有独特且不稳定的稳态,其时间演化是由非线性效应决定的。通过对雅可比矩阵特征值的研究,对雅可比矩阵的线性逼近进行了分析,以表征雅可比矩阵在参数空间中的局部稳定性和局部分岔。如果延迟等于零,则计算李雅普诺夫指数。对于某些参数值,我们证明了系统具有混沌行为。离散非线性模型与离散随机模型相关联。对于该模型的线性化,我们建立了状态变量的均值和二次均值渐近稳定的条件。最后给出了一些数值算例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability in a Discrete-Time Dynamic Model with Delay for a Stock Market
The time evolution of prices and savings in a stock market is modeled by a discrete-delay nonlinear dynamic system. The proposed model has a unique and unstable steady-state, so its time evolution is determined by the nonlinear effects acting out of the equilibrium. We perform the analysis of the linear approximation through the study of the eigenvalues of the Jacobian matrix in order to characterize the local stability properties and the local bifurcations in the parameter space. If the delay is equal to zero, Lyapunov exponents are calculated. For certain values of the parameters, we prove that the system has a chaotic behaviour. The discrete nonlinear model is associated with a discrete stochastic model. For the liniarization of this model, we establish the conditions for which the mean and quadratic mean values of the state variables are asymptotically stable. Some numerical examples are finally given to justify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信