{"title":"$ (\\mathfrak{p}, \\mathfrak{q}) $ Bernstein b<e:1>曲线的保形性质及其在$ [a, b] $上的结果","authors":"V. Sharma, Asif Khan, M. Mursaleen","doi":"10.3934/mfc.2022041","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This article deals with shape preserving and local approximation properties of post-quantum Bernstein bases and operators over arbitrary interval <inline-formula><tex-math id=\"M3\">\\begin{document}$ [a, b] $\\end{document}</tex-math></inline-formula> defined by Khan and Sharma (Iran J Sci Technol Trans Sci (2021)). The properties for <inline-formula><tex-math id=\"M4\">\\begin{document}$ (\\mathfrak{p}, \\mathfrak{q}) $\\end{document}</tex-math></inline-formula>-Bernstein bases and Bézier curves over <inline-formula><tex-math id=\"M5\">\\begin{document}$ [a, b] $\\end{document}</tex-math></inline-formula> have been given. A de Casteljau algorithm has been discussed. Further we obtain the rate of convergence for <inline-formula><tex-math id=\"M6\">\\begin{document}$ (\\mathfrak{p}, \\mathfrak{q}) $\\end{document}</tex-math></inline-formula>-Bernstein operators over <inline-formula><tex-math id=\"M7\">\\begin{document}$ [a, b] $\\end{document}</tex-math></inline-formula> in terms of Lipschitz type space having two parameters and Lipschitz maximal functions.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape preserving properties of $ (\\\\mathfrak{p}, \\\\mathfrak{q}) $ Bernstein Bèzier curves and corresponding results over $ [a, b] $\",\"authors\":\"V. Sharma, Asif Khan, M. Mursaleen\",\"doi\":\"10.3934/mfc.2022041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This article deals with shape preserving and local approximation properties of post-quantum Bernstein bases and operators over arbitrary interval <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ [a, b] $\\\\end{document}</tex-math></inline-formula> defined by Khan and Sharma (Iran J Sci Technol Trans Sci (2021)). The properties for <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ (\\\\mathfrak{p}, \\\\mathfrak{q}) $\\\\end{document}</tex-math></inline-formula>-Bernstein bases and Bézier curves over <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ [a, b] $\\\\end{document}</tex-math></inline-formula> have been given. A de Casteljau algorithm has been discussed. Further we obtain the rate of convergence for <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ (\\\\mathfrak{p}, \\\\mathfrak{q}) $\\\\end{document}</tex-math></inline-formula>-Bernstein operators over <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ [a, b] $\\\\end{document}</tex-math></inline-formula> in terms of Lipschitz type space having two parameters and Lipschitz maximal functions.</p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
This article deals with shape preserving and local approximation properties of post-quantum Bernstein bases and operators over arbitrary interval \begin{document}$ [a, b] $\end{document} defined by Khan and Sharma (Iran J Sci Technol Trans Sci (2021)). The properties for \begin{document}$ (\mathfrak{p}, \mathfrak{q}) $\end{document}-Bernstein bases and Bézier curves over \begin{document}$ [a, b] $\end{document} have been given. A de Casteljau algorithm has been discussed. Further we obtain the rate of convergence for \begin{document}$ (\mathfrak{p}, \mathfrak{q}) $\end{document}-Bernstein operators over \begin{document}$ [a, b] $\end{document} in terms of Lipschitz type space having two parameters and Lipschitz maximal functions.
Shape preserving properties of $ (\mathfrak{p}, \mathfrak{q}) $ Bernstein Bèzier curves and corresponding results over $ [a, b] $
This article deals with shape preserving and local approximation properties of post-quantum Bernstein bases and operators over arbitrary interval \begin{document}$ [a, b] $\end{document} defined by Khan and Sharma (Iran J Sci Technol Trans Sci (2021)). The properties for \begin{document}$ (\mathfrak{p}, \mathfrak{q}) $\end{document}-Bernstein bases and Bézier curves over \begin{document}$ [a, b] $\end{document} have been given. A de Casteljau algorithm has been discussed. Further we obtain the rate of convergence for \begin{document}$ (\mathfrak{p}, \mathfrak{q}) $\end{document}-Bernstein operators over \begin{document}$ [a, b] $\end{document} in terms of Lipschitz type space having two parameters and Lipschitz maximal functions.