{"title":"一种高正交精度的v波段低相位噪声低抖动亚谐波注入锁定QVCO","authors":"Chun-Ching Chan, Han-Nong Yeh, Gun Huang, Hong-Yeh Chang","doi":"10.1109/MWSYM.2017.8058866","DOIUrl":null,"url":null,"abstract":"A V-band CMOS sub-harmonically injection-locked quadrature voltage-controlled oscillator (SILQVCO) is presented using 90-nm CMOS process in this paper. A transformer coupled topology is employed in the SILQVCO to enhance locking range and operation frequency. The measured free-running oscillation frequency is from 56.6 to 59 GHz with a tuning range of 2.4 GHz. With one-third sub-harmonic injection, the SILQVCO features an overall locking range of 3.5 GHz, a phase noise of −126.8 dBc/Hz at 1-MHz offset, and a RMS jitter of 54 fs. The measured quadrature phase error and amplitude error are 0.32° and 0.26 dB, respectively. As compared with the prior art, this work has the best finger of merits in the millimeter-wave band.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"25 1","pages":"1359-1362"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A V-band low-phase-noise low-jitter sub-harmonically injection-locked QVCO with high quadrature accuracy in 90-nm CMOS process\",\"authors\":\"Chun-Ching Chan, Han-Nong Yeh, Gun Huang, Hong-Yeh Chang\",\"doi\":\"10.1109/MWSYM.2017.8058866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A V-band CMOS sub-harmonically injection-locked quadrature voltage-controlled oscillator (SILQVCO) is presented using 90-nm CMOS process in this paper. A transformer coupled topology is employed in the SILQVCO to enhance locking range and operation frequency. The measured free-running oscillation frequency is from 56.6 to 59 GHz with a tuning range of 2.4 GHz. With one-third sub-harmonic injection, the SILQVCO features an overall locking range of 3.5 GHz, a phase noise of −126.8 dBc/Hz at 1-MHz offset, and a RMS jitter of 54 fs. The measured quadrature phase error and amplitude error are 0.32° and 0.26 dB, respectively. As compared with the prior art, this work has the best finger of merits in the millimeter-wave band.\",\"PeriodicalId\":6481,\"journal\":{\"name\":\"2017 IEEE MTT-S International Microwave Symposium (IMS)\",\"volume\":\"25 1\",\"pages\":\"1359-1362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2017.8058866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A V-band low-phase-noise low-jitter sub-harmonically injection-locked QVCO with high quadrature accuracy in 90-nm CMOS process
A V-band CMOS sub-harmonically injection-locked quadrature voltage-controlled oscillator (SILQVCO) is presented using 90-nm CMOS process in this paper. A transformer coupled topology is employed in the SILQVCO to enhance locking range and operation frequency. The measured free-running oscillation frequency is from 56.6 to 59 GHz with a tuning range of 2.4 GHz. With one-third sub-harmonic injection, the SILQVCO features an overall locking range of 3.5 GHz, a phase noise of −126.8 dBc/Hz at 1-MHz offset, and a RMS jitter of 54 fs. The measured quadrature phase error and amplitude error are 0.32° and 0.26 dB, respectively. As compared with the prior art, this work has the best finger of merits in the millimeter-wave band.