{"title":"非齐次非线性Choquard方程的多个正解","authors":"Haiyang Li, Chunlei Tang, Xing-Ping Wu","doi":"10.7153/dea-2017-09-38","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of multiple positive solutions for the following equation: −Δu+u = (Kα (x)∗ |u|p)|u|p−2u +λ f (x), x ∈ R , where N 3, α ∈ (0,N), p ∈ (1+ α/N,(N + α)/(N− 2)), Kα (x) is the Riesz potential, and f (x) ∈ H−1(RN) , f (x) 0 , f (x) ≡ 0. We prove that there exists a constant λ ∗ > 0 such that the equation above possesses at least two positive solutions for all λ ∈ (0,λ ∗) . Furthermore, we can obtain the existence of the ground state solution.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"119 1","pages":"553-563"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple positive solutions for a nonlinear Choquard equation with nonhomogeneous\",\"authors\":\"Haiyang Li, Chunlei Tang, Xing-Ping Wu\",\"doi\":\"10.7153/dea-2017-09-38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence of multiple positive solutions for the following equation: −Δu+u = (Kα (x)∗ |u|p)|u|p−2u +λ f (x), x ∈ R , where N 3, α ∈ (0,N), p ∈ (1+ α/N,(N + α)/(N− 2)), Kα (x) is the Riesz potential, and f (x) ∈ H−1(RN) , f (x) 0 , f (x) ≡ 0. We prove that there exists a constant λ ∗ > 0 such that the equation above possesses at least two positive solutions for all λ ∈ (0,λ ∗) . Furthermore, we can obtain the existence of the ground state solution.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"119 1\",\"pages\":\"553-563\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2017-09-38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2017-09-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了下列方程的多个正解的存在性:−Δu+u = (Kα (x)∗|u|p)|u|p−2u +λ f (x), x∈R,其中N 3, α∈(0,N), p∈(1+ α/N,(N + α)/(N−2)),Kα (x)是Riesz势,f (x)∈H−1(RN), f (x) 0, f (x)≡0。我们证明了存在一个常数λ∗> 0,使得上述方程对所有λ∈(0,λ∗)至少有两个正解。进一步,我们可以得到基态解的存在性。
Multiple positive solutions for a nonlinear Choquard equation with nonhomogeneous
In this paper, we study the existence of multiple positive solutions for the following equation: −Δu+u = (Kα (x)∗ |u|p)|u|p−2u +λ f (x), x ∈ R , where N 3, α ∈ (0,N), p ∈ (1+ α/N,(N + α)/(N− 2)), Kα (x) is the Riesz potential, and f (x) ∈ H−1(RN) , f (x) 0 , f (x) ≡ 0. We prove that there exists a constant λ ∗ > 0 such that the equation above possesses at least two positive solutions for all λ ∈ (0,λ ∗) . Furthermore, we can obtain the existence of the ground state solution.