{"title":"同调渗流:巨k环的形成","authors":"O. Bobrowski, P. Skraba","doi":"10.1093/imrn/rnaa305","DOIUrl":null,"url":null,"abstract":"In this paper we introduce and study a higher-dimensional analogue of the giant component in continuum percolation. Using the language of algebraic topology, we define the notion of giant k-dimensional cycles (with 0-cycles being connected components). Considering a continuum percolation model in the flat d-dimensional torus, we show that all the giant k-cycles (k=1,...,d-1) appear in the regime known as the thermodynamic limit. We also prove that the thresholds for the emergence of the giant k-cycles are increasing in k and are tightly related to the critical values in continuum percolation. Finally, we provide bounds for the exponential decay of the probabilities of giant cycles appearing.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Homological Percolation: The Formation of Giant k-Cycles\",\"authors\":\"O. Bobrowski, P. Skraba\",\"doi\":\"10.1093/imrn/rnaa305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce and study a higher-dimensional analogue of the giant component in continuum percolation. Using the language of algebraic topology, we define the notion of giant k-dimensional cycles (with 0-cycles being connected components). Considering a continuum percolation model in the flat d-dimensional torus, we show that all the giant k-cycles (k=1,...,d-1) appear in the regime known as the thermodynamic limit. We also prove that the thresholds for the emergence of the giant k-cycles are increasing in k and are tightly related to the critical values in continuum percolation. Finally, we provide bounds for the exponential decay of the probabilities of giant cycles appearing.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homological Percolation: The Formation of Giant k-Cycles
In this paper we introduce and study a higher-dimensional analogue of the giant component in continuum percolation. Using the language of algebraic topology, we define the notion of giant k-dimensional cycles (with 0-cycles being connected components). Considering a continuum percolation model in the flat d-dimensional torus, we show that all the giant k-cycles (k=1,...,d-1) appear in the regime known as the thermodynamic limit. We also prove that the thresholds for the emergence of the giant k-cycles are increasing in k and are tightly related to the critical values in continuum percolation. Finally, we provide bounds for the exponential decay of the probabilities of giant cycles appearing.