同调渗流:巨k环的形成

O. Bobrowski, P. Skraba
{"title":"同调渗流:巨k环的形成","authors":"O. Bobrowski, P. Skraba","doi":"10.1093/imrn/rnaa305","DOIUrl":null,"url":null,"abstract":"In this paper we introduce and study a higher-dimensional analogue of the giant component in continuum percolation. Using the language of algebraic topology, we define the notion of giant k-dimensional cycles (with 0-cycles being connected components). Considering a continuum percolation model in the flat d-dimensional torus, we show that all the giant k-cycles (k=1,...,d-1) appear in the regime known as the thermodynamic limit. We also prove that the thresholds for the emergence of the giant k-cycles are increasing in k and are tightly related to the critical values in continuum percolation. Finally, we provide bounds for the exponential decay of the probabilities of giant cycles appearing.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Homological Percolation: The Formation of Giant k-Cycles\",\"authors\":\"O. Bobrowski, P. Skraba\",\"doi\":\"10.1093/imrn/rnaa305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce and study a higher-dimensional analogue of the giant component in continuum percolation. Using the language of algebraic topology, we define the notion of giant k-dimensional cycles (with 0-cycles being connected components). Considering a continuum percolation model in the flat d-dimensional torus, we show that all the giant k-cycles (k=1,...,d-1) appear in the regime known as the thermodynamic limit. We also prove that the thresholds for the emergence of the giant k-cycles are increasing in k and are tightly related to the critical values in continuum percolation. Finally, we provide bounds for the exponential decay of the probabilities of giant cycles appearing.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文介绍并研究了连续渗流中巨分量的高维模拟。利用代数拓扑的语言,我们定义了巨大k维环的概念(其中0个环是连接的分量)。考虑平面d维环面的连续渗流模型,我们证明了所有的巨大k环(k=1,…,d-1)都出现在称为热力学极限的区域。我们还证明了出现巨大k环的阈值随着k的增加而增加,并且与连续渗流的临界值密切相关。最后,我们给出了巨循环出现概率的指数衰减的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological Percolation: The Formation of Giant k-Cycles
In this paper we introduce and study a higher-dimensional analogue of the giant component in continuum percolation. Using the language of algebraic topology, we define the notion of giant k-dimensional cycles (with 0-cycles being connected components). Considering a continuum percolation model in the flat d-dimensional torus, we show that all the giant k-cycles (k=1,...,d-1) appear in the regime known as the thermodynamic limit. We also prove that the thresholds for the emergence of the giant k-cycles are increasing in k and are tightly related to the critical values in continuum percolation. Finally, we provide bounds for the exponential decay of the probabilities of giant cycles appearing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信