基于多边形切线算法的动态工作空间路径规划与避障

Q2 Computer Science
Duaa Ramadhan, Auday Al-Mayyahi, Moofed Rashid
{"title":"基于多边形切线算法的动态工作空间路径规划与避障","authors":"Duaa Ramadhan, Auday Al-Mayyahi, Moofed Rashid","doi":"10.37917/IJEEE.17.1.16","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a path planning system in an environment that contains a set of static and dynamic polygon obstacles localized randomly. In this paper, an algorithm so-called (Polygon shape tangents algorithm) is proposed to move a mobile robot from a source point to a destination point with no collision with surrounding obstacles using the visibility binary tree algorithm. The methodology of this algorithm is based on predicting the steps of a robot trajectory from the source to the destination point. The polygon shapes tangent algorithm is compared with the virtual circles' tangents algorithm for different numbers of static and dynamic polygon obstacles for the time of arrival and the length of the path to the target. The obtained result shows that the used algorithm has better performance than the other algorithms and gets less time of arrival and shortest path with free collision.","PeriodicalId":37533,"journal":{"name":"International Journal of Electrical and Electronic Engineering and Telecommunications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning and Obstacles Avoidance in Dynamic Workspace Using Polygon Shape Tangents Algorithm\",\"authors\":\"Duaa Ramadhan, Auday Al-Mayyahi, Moofed Rashid\",\"doi\":\"10.37917/IJEEE.17.1.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a path planning system in an environment that contains a set of static and dynamic polygon obstacles localized randomly. In this paper, an algorithm so-called (Polygon shape tangents algorithm) is proposed to move a mobile robot from a source point to a destination point with no collision with surrounding obstacles using the visibility binary tree algorithm. The methodology of this algorithm is based on predicting the steps of a robot trajectory from the source to the destination point. The polygon shapes tangent algorithm is compared with the virtual circles' tangents algorithm for different numbers of static and dynamic polygon obstacles for the time of arrival and the length of the path to the target. The obtained result shows that the used algorithm has better performance than the other algorithms and gets less time of arrival and shortest path with free collision.\",\"PeriodicalId\":37533,\"journal\":{\"name\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37917/IJEEE.17.1.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Electronic Engineering and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37917/IJEEE.17.1.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种包含随机定位的静态和动态多边形障碍物的路径规划系统。本文提出了一种基于可视性二叉树算法的移动机器人从源点移动到目的点且不与周围障碍物发生碰撞的算法(多边形形状切线算法)。该算法的方法是基于预测机器人从源点到目的点的轨迹步长。针对不同数量的静态和动态多边形障碍物,比较了多边形形状切线算法与虚拟圆切线算法的到达时间和到达目标的路径长度。实验结果表明,该算法比其他算法具有更优的到达时间和最短的无碰撞路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Planning and Obstacles Avoidance in Dynamic Workspace Using Polygon Shape Tangents Algorithm
This paper presents the design of a path planning system in an environment that contains a set of static and dynamic polygon obstacles localized randomly. In this paper, an algorithm so-called (Polygon shape tangents algorithm) is proposed to move a mobile robot from a source point to a destination point with no collision with surrounding obstacles using the visibility binary tree algorithm. The methodology of this algorithm is based on predicting the steps of a robot trajectory from the source to the destination point. The polygon shapes tangent algorithm is compared with the virtual circles' tangents algorithm for different numbers of static and dynamic polygon obstacles for the time of arrival and the length of the path to the target. The obtained result shows that the used algorithm has better performance than the other algorithms and gets less time of arrival and shortest path with free collision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
22
期刊介绍: International Journal of Electrical and Electronic Engineering & Telecommunications. IJEETC is a scholarly peer-reviewed international scientific journal published quarterly, focusing on theories, systems, methods, algorithms and applications in electrical and electronic engineering & telecommunications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Electrical and Electronic Engineering & Telecommunications. All papers will be blind reviewed and accepted papers will be published quarterly, which is available online (open access) and in printed version.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信