Po-Yuen Ho, E. Dmitrieva, Ningwei Sun, O. Guskova, F. Lissel
{"title":"新型钌多金属炔的合成及其在多态电致变色存储器中的应用","authors":"Po-Yuen Ho, E. Dmitrieva, Ningwei Sun, O. Guskova, F. Lissel","doi":"10.1002/admt.202200316","DOIUrl":null,"url":null,"abstract":"Multilevel (or multistate) electrochromic devices have the potential to achieve highly compact memory capacity while instantaneously transferring data between memory and processing units. In this article, three novel solution‐processable ruthenium‐polymetallaynes (i.e., P1, P2, and P3), in which the redox‐addressable Ru center is covalently embedded into a conjugated organic polymer, are discussed. In pursuit of higher functionality (e.g., stable multistate behavior, low operating voltage), the organic ligand bridging the metal centers is systematically varied. The previously reported P1 has a bithiophene (BT) bridging ligand with a high degree of rotational freedom. By replacing BT with cyclopenta‐dithiophene in P2 and dithieno‐pyrrole (DTP) in P3, both of which are more planar than BT, the degree of freedom is decreased. By using DTP, redox‐matching is achieved between the metal center and organic ligand, leading to extra stability of the mixed‐valence (MV) state in P3. In‐depth experimental (i.e., in situ electron paramagnetic resonance and UV–vis–NIR spectroelectrochemistry) and theoretical studies (i.e., DFT calculations) are carried out on the polymer thin‐films, showing enhanced metal–metal (M–M) interaction in P2 and P3 and stable Robin–Day class III MV compound in P3. These polymers are also first time fabricated into solid‐state electrochromic devices and the stability of each oxidation state is characterized by tracing the change of transmittance over time, showing satisfactory cyclic stability and retention behavior (≈90% retention after 30 min).","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Novel Ruthenium‐Polymetallaynes and Their Application in Multistate Electrochromic Memory\",\"authors\":\"Po-Yuen Ho, E. Dmitrieva, Ningwei Sun, O. Guskova, F. Lissel\",\"doi\":\"10.1002/admt.202200316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilevel (or multistate) electrochromic devices have the potential to achieve highly compact memory capacity while instantaneously transferring data between memory and processing units. In this article, three novel solution‐processable ruthenium‐polymetallaynes (i.e., P1, P2, and P3), in which the redox‐addressable Ru center is covalently embedded into a conjugated organic polymer, are discussed. In pursuit of higher functionality (e.g., stable multistate behavior, low operating voltage), the organic ligand bridging the metal centers is systematically varied. The previously reported P1 has a bithiophene (BT) bridging ligand with a high degree of rotational freedom. By replacing BT with cyclopenta‐dithiophene in P2 and dithieno‐pyrrole (DTP) in P3, both of which are more planar than BT, the degree of freedom is decreased. By using DTP, redox‐matching is achieved between the metal center and organic ligand, leading to extra stability of the mixed‐valence (MV) state in P3. In‐depth experimental (i.e., in situ electron paramagnetic resonance and UV–vis–NIR spectroelectrochemistry) and theoretical studies (i.e., DFT calculations) are carried out on the polymer thin‐films, showing enhanced metal–metal (M–M) interaction in P2 and P3 and stable Robin–Day class III MV compound in P3. These polymers are also first time fabricated into solid‐state electrochromic devices and the stability of each oxidation state is characterized by tracing the change of transmittance over time, showing satisfactory cyclic stability and retention behavior (≈90% retention after 30 min).\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202200316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Novel Ruthenium‐Polymetallaynes and Their Application in Multistate Electrochromic Memory
Multilevel (or multistate) electrochromic devices have the potential to achieve highly compact memory capacity while instantaneously transferring data between memory and processing units. In this article, three novel solution‐processable ruthenium‐polymetallaynes (i.e., P1, P2, and P3), in which the redox‐addressable Ru center is covalently embedded into a conjugated organic polymer, are discussed. In pursuit of higher functionality (e.g., stable multistate behavior, low operating voltage), the organic ligand bridging the metal centers is systematically varied. The previously reported P1 has a bithiophene (BT) bridging ligand with a high degree of rotational freedom. By replacing BT with cyclopenta‐dithiophene in P2 and dithieno‐pyrrole (DTP) in P3, both of which are more planar than BT, the degree of freedom is decreased. By using DTP, redox‐matching is achieved between the metal center and organic ligand, leading to extra stability of the mixed‐valence (MV) state in P3. In‐depth experimental (i.e., in situ electron paramagnetic resonance and UV–vis–NIR spectroelectrochemistry) and theoretical studies (i.e., DFT calculations) are carried out on the polymer thin‐films, showing enhanced metal–metal (M–M) interaction in P2 and P3 and stable Robin–Day class III MV compound in P3. These polymers are also first time fabricated into solid‐state electrochromic devices and the stability of each oxidation state is characterized by tracing the change of transmittance over time, showing satisfactory cyclic stability and retention behavior (≈90% retention after 30 min).