Danial Katoozian, Hossein Hosseini-Nejad, M. Dehaqani, A. Shoeibi, J. Górriz
{"title":"一种基于脉冲序列时间信息的硬件高效皮质内神经解码方法","authors":"Danial Katoozian, Hossein Hosseini-Nejad, M. Dehaqani, A. Shoeibi, J. Górriz","doi":"10.3233/ica-220687","DOIUrl":null,"url":null,"abstract":"Motor intention decoding is one of the most challenging issues in brain machine interface (BMI). Despite several important studies on accurate algorithms, the decoding stage is still processed on a computer, which makes the solution impractical for implantable applications due to its size and power consumption. This study aimed to provide an appropriate real-time decoding approach for implantable BMIs by proposing an agile decoding algorithm with a new input model and implementing efficient hardware. This method, unlike common ones employed firing rate as input, used a new input space based on spike train temporal information. The proposed approach was evaluated based on a real dataset recorded from frontal eye field (FEF) of two male rhesus monkeys with eight possible angles as the output space and presented a decoding accuracy of 62%. Furthermore, a hardware architecture was designed as an application-specific integrated circuit (ASIC) chip for real-time neural decoding based on the proposed algorithm. The designed chip was implemented in the standard complementary metal-oxide-semiconductor (CMOS) 180 nm technology, occupied an area of 4.15 mm2, and consumed 28.58 μW @1.8 V power supply.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hardware efficient intra-cortical neural decoding approach based on spike train temporal information\",\"authors\":\"Danial Katoozian, Hossein Hosseini-Nejad, M. Dehaqani, A. Shoeibi, J. Górriz\",\"doi\":\"10.3233/ica-220687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor intention decoding is one of the most challenging issues in brain machine interface (BMI). Despite several important studies on accurate algorithms, the decoding stage is still processed on a computer, which makes the solution impractical for implantable applications due to its size and power consumption. This study aimed to provide an appropriate real-time decoding approach for implantable BMIs by proposing an agile decoding algorithm with a new input model and implementing efficient hardware. This method, unlike common ones employed firing rate as input, used a new input space based on spike train temporal information. The proposed approach was evaluated based on a real dataset recorded from frontal eye field (FEF) of two male rhesus monkeys with eight possible angles as the output space and presented a decoding accuracy of 62%. Furthermore, a hardware architecture was designed as an application-specific integrated circuit (ASIC) chip for real-time neural decoding based on the proposed algorithm. The designed chip was implemented in the standard complementary metal-oxide-semiconductor (CMOS) 180 nm technology, occupied an area of 4.15 mm2, and consumed 28.58 μW @1.8 V power supply.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-220687\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-220687","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A hardware efficient intra-cortical neural decoding approach based on spike train temporal information
Motor intention decoding is one of the most challenging issues in brain machine interface (BMI). Despite several important studies on accurate algorithms, the decoding stage is still processed on a computer, which makes the solution impractical for implantable applications due to its size and power consumption. This study aimed to provide an appropriate real-time decoding approach for implantable BMIs by proposing an agile decoding algorithm with a new input model and implementing efficient hardware. This method, unlike common ones employed firing rate as input, used a new input space based on spike train temporal information. The proposed approach was evaluated based on a real dataset recorded from frontal eye field (FEF) of two male rhesus monkeys with eight possible angles as the output space and presented a decoding accuracy of 62%. Furthermore, a hardware architecture was designed as an application-specific integrated circuit (ASIC) chip for real-time neural decoding based on the proposed algorithm. The designed chip was implemented in the standard complementary metal-oxide-semiconductor (CMOS) 180 nm technology, occupied an area of 4.15 mm2, and consumed 28.58 μW @1.8 V power supply.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.