流行病传播的动力学模型

M. Pulvirenti, S. Simonella
{"title":"流行病传播的动力学模型","authors":"M. Pulvirenti, S. Simonella","doi":"10.2140/memocs.2020.8.249","DOIUrl":null,"url":null,"abstract":"We present a Boltzmann equation for mixtures of three species of particles reducing to the Kermack-McKendrick (SIR) equations for the time-evolution of the density of infected agents in an isolated population. The kinetic model is potentially more detailed and might provide information on space mixing of the agents.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A kinetic model for epidemic spread\",\"authors\":\"M. Pulvirenti, S. Simonella\",\"doi\":\"10.2140/memocs.2020.8.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Boltzmann equation for mixtures of three species of particles reducing to the Kermack-McKendrick (SIR) equations for the time-evolution of the density of infected agents in an isolated population. The kinetic model is potentially more detailed and might provide information on space mixing of the agents.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/memocs.2020.8.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/memocs.2020.8.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了三种粒子混合物的玻尔兹曼方程,简化为Kermack-McKendrick (SIR)方程,用于隔离种群中感染因子密度的时间演化。动力学模型可能更详细,并可能提供有关介质空间混合的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A kinetic model for epidemic spread
We present a Boltzmann equation for mixtures of three species of particles reducing to the Kermack-McKendrick (SIR) equations for the time-evolution of the density of infected agents in an isolated population. The kinetic model is potentially more detailed and might provide information on space mixing of the agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信