{"title":"虚二次域上GL N的爱森斯坦上同类","authors":"N. Bergeron, Pierre Charollois, Luis E. García","doi":"10.1515/crelle-2022-0089","DOIUrl":null,"url":null,"abstract":"Abstract We study the arithmetic of degree N - 1 {N-1} Eisenstein cohomology classes for the locally symmetric spaces attached to GL N {\\mathrm{GL}_{N}} over an imaginary quadratic field k. Under natural conditions we evaluate these classes on ( N - 1 ) {(N-1)} -cycles associated to degree N extensions L / k {L/k} as linear combinations of generalized Dedekind sums. As a consequence we prove a remarkable conjecture of Sczech and Colmez expressing critical values of L-functions attached to Hecke characters of L as polynomials in Kronecker–Eisenstein series evaluated at torsion points on elliptic curves with complex multiplication by k. We recover in particular the algebraicity of these critical values.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"72 1","pages":"1 - 40"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Eisenstein cohomology classes for GL N over imaginary quadratic fields\",\"authors\":\"N. Bergeron, Pierre Charollois, Luis E. García\",\"doi\":\"10.1515/crelle-2022-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the arithmetic of degree N - 1 {N-1} Eisenstein cohomology classes for the locally symmetric spaces attached to GL N {\\\\mathrm{GL}_{N}} over an imaginary quadratic field k. Under natural conditions we evaluate these classes on ( N - 1 ) {(N-1)} -cycles associated to degree N extensions L / k {L/k} as linear combinations of generalized Dedekind sums. As a consequence we prove a remarkable conjecture of Sczech and Colmez expressing critical values of L-functions attached to Hecke characters of L as polynomials in Kronecker–Eisenstein series evaluated at torsion points on elliptic curves with complex multiplication by k. We recover in particular the algebraicity of these critical values.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"72 1\",\"pages\":\"1 - 40\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0089\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0089","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
摘要研究了虚二次域k上局部对称空间GL N {\ mathm {GL}_{N}}的N-1 {N-1}次Eisenstein上同调类的算法。在自然条件下,我们将这些类在N次扩展L/k {L/k}相关的(N-1) {(N-1)}环上作为广义Dedekind和的线性组合求值。因此,我们证明了schzech和Colmez的一个重要猜想,将L的Hecke特征上的L函数的临界值表示为Kronecker-Eisenstein级数的多项式,在椭圆曲线的扭转点上用复数乘以k来求值。我们特别恢复了这些临界值的代数性。
Eisenstein cohomology classes for GL N over imaginary quadratic fields
Abstract We study the arithmetic of degree N - 1 {N-1} Eisenstein cohomology classes for the locally symmetric spaces attached to GL N {\mathrm{GL}_{N}} over an imaginary quadratic field k. Under natural conditions we evaluate these classes on ( N - 1 ) {(N-1)} -cycles associated to degree N extensions L / k {L/k} as linear combinations of generalized Dedekind sums. As a consequence we prove a remarkable conjecture of Sczech and Colmez expressing critical values of L-functions attached to Hecke characters of L as polynomials in Kronecker–Eisenstein series evaluated at torsion points on elliptic curves with complex multiplication by k. We recover in particular the algebraicity of these critical values.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.