{"title":"消除固有频率分量抑制时变和参数不确定非线性系统的残余振动","authors":"H. Mori, Kai Kurihara, N. Sowa, T. Kondou","doi":"10.1115/1.4051138","DOIUrl":null,"url":null,"abstract":"\n A systematic approach is developed for determining a control input for the point-to-point control of an overhead crane that exhibits temporal variation of rope length in addition to damping and nonlinearity, without inducing residual vibration. Complete suppression of the residual vibration is achieved by eliminating the natural frequency component of the cargo from the apparent external force, which is defined to include the effects of damping, nonlinearity, and parameter variation. Furthermore, an effective technique previously proposed by the authors for improving robustness to the modeling error of the natural frequency is extended. Numerical simulation results show that, even when cargo is hoisted up or down during operation, the proposed method realizes accurate positioning of the cargo without inducing residual vibration and sufficiently improves robustness. To the best of our knowledge, this is the first frequency-domain robust open-loop control strategy that ensures a theoretical zero amplitude for residual vibration in the absence of modeling error in nonlinear crane hoisting operation. The developed method is not only a contribution to the realization of low-cost and efficient crane hoisting operation, but is also applicable to the control of other nonlinear damped systems that include time-varying parameters.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"28 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of Residual Vibration in Nonlinear Systems With Temporal Variation and Uncertainty in Parameters by Elimination of the Natural Frequency Component\",\"authors\":\"H. Mori, Kai Kurihara, N. Sowa, T. Kondou\",\"doi\":\"10.1115/1.4051138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A systematic approach is developed for determining a control input for the point-to-point control of an overhead crane that exhibits temporal variation of rope length in addition to damping and nonlinearity, without inducing residual vibration. Complete suppression of the residual vibration is achieved by eliminating the natural frequency component of the cargo from the apparent external force, which is defined to include the effects of damping, nonlinearity, and parameter variation. Furthermore, an effective technique previously proposed by the authors for improving robustness to the modeling error of the natural frequency is extended. Numerical simulation results show that, even when cargo is hoisted up or down during operation, the proposed method realizes accurate positioning of the cargo without inducing residual vibration and sufficiently improves robustness. To the best of our knowledge, this is the first frequency-domain robust open-loop control strategy that ensures a theoretical zero amplitude for residual vibration in the absence of modeling error in nonlinear crane hoisting operation. The developed method is not only a contribution to the realization of low-cost and efficient crane hoisting operation, but is also applicable to the control of other nonlinear damped systems that include time-varying parameters.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051138\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4051138","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Suppression of Residual Vibration in Nonlinear Systems With Temporal Variation and Uncertainty in Parameters by Elimination of the Natural Frequency Component
A systematic approach is developed for determining a control input for the point-to-point control of an overhead crane that exhibits temporal variation of rope length in addition to damping and nonlinearity, without inducing residual vibration. Complete suppression of the residual vibration is achieved by eliminating the natural frequency component of the cargo from the apparent external force, which is defined to include the effects of damping, nonlinearity, and parameter variation. Furthermore, an effective technique previously proposed by the authors for improving robustness to the modeling error of the natural frequency is extended. Numerical simulation results show that, even when cargo is hoisted up or down during operation, the proposed method realizes accurate positioning of the cargo without inducing residual vibration and sufficiently improves robustness. To the best of our knowledge, this is the first frequency-domain robust open-loop control strategy that ensures a theoretical zero amplitude for residual vibration in the absence of modeling error in nonlinear crane hoisting operation. The developed method is not only a contribution to the realization of low-cost and efficient crane hoisting operation, but is also applicable to the control of other nonlinear damped systems that include time-varying parameters.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.