带扶手椅链的高能量密度金属氮化物

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jianan Yuan, K. Xia, C. Ding, Xiaomeng Wang, Qing Lu, Jian Sun
{"title":"带扶手椅链的高能量密度金属氮化物","authors":"Jianan Yuan, K. Xia, C. Ding, Xiaomeng Wang, Qing Lu, Jian Sun","doi":"10.1063/5.0087168","DOIUrl":null,"url":null,"abstract":"Polymeric nitrogen has attracted much attention owing to its possible application as an environmentally safe high-energy-density material. Based on a crystal structure search method accelerated by the use of machine learning and graph theory and on first-principles calculations, we predict a series of metal nitrides with chain-like polynitrogen ( P21-AlN6, P21-GaN6, P-1-YN6, and P4/ mnc-TiN8), all of which are estimated to be energetically stable below 40.8 GPa. Phonon calculations and ab initio molecular dynamics simulations at finite temperature suggest that these nitrides are dynamically stable. We find that the nitrogen in these metal nitrides can polymerize into two types of poly-[Formula: see text] chains, in which the π electrons are either extended or localized. Owing to the presence of the polymerized N4 chains, these metal nitrides can store a large amount of chemical energy, which is estimated to range from 4.50 to 2.71 kJ/g. Moreover, these compounds have high detonation pressures and detonation velocities, exceeding those of conventional explosives such as TNT and HMX.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"51 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"High-energy-density metal nitrides with armchair chains\",\"authors\":\"Jianan Yuan, K. Xia, C. Ding, Xiaomeng Wang, Qing Lu, Jian Sun\",\"doi\":\"10.1063/5.0087168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric nitrogen has attracted much attention owing to its possible application as an environmentally safe high-energy-density material. Based on a crystal structure search method accelerated by the use of machine learning and graph theory and on first-principles calculations, we predict a series of metal nitrides with chain-like polynitrogen ( P21-AlN6, P21-GaN6, P-1-YN6, and P4/ mnc-TiN8), all of which are estimated to be energetically stable below 40.8 GPa. Phonon calculations and ab initio molecular dynamics simulations at finite temperature suggest that these nitrides are dynamically stable. We find that the nitrogen in these metal nitrides can polymerize into two types of poly-[Formula: see text] chains, in which the π electrons are either extended or localized. Owing to the presence of the polymerized N4 chains, these metal nitrides can store a large amount of chemical energy, which is estimated to range from 4.50 to 2.71 kJ/g. Moreover, these compounds have high detonation pressures and detonation velocities, exceeding those of conventional explosives such as TNT and HMX.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0087168\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0087168","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

高分子氮作为一种环境安全的高能量密度材料,其应用前景备受关注。基于机器学习和图论加速的晶体结构搜索方法和第一性原理计算,我们预测了一系列具有链状多氮的金属氮化物(P21-AlN6, P21-GaN6, P-1-YN6和P4/ mnc-TiN8),所有这些金属氮化物的能量稳定都低于40.8 GPa。声子计算和有限温度下从头算分子动力学模拟表明,这些氮化物是动态稳定的。我们发现这些金属氮化物中的氮可以聚合成两种类型的聚链,其中π电子要么是延伸的,要么是局部的。由于存在聚合的N4链,这些金属氮化物可以储存大量的化学能,估计其范围为4.50至2.71 kJ/g。此外,这些化合物具有高爆压和爆速,超过了TNT和HMX等常规炸药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-energy-density metal nitrides with armchair chains
Polymeric nitrogen has attracted much attention owing to its possible application as an environmentally safe high-energy-density material. Based on a crystal structure search method accelerated by the use of machine learning and graph theory and on first-principles calculations, we predict a series of metal nitrides with chain-like polynitrogen ( P21-AlN6, P21-GaN6, P-1-YN6, and P4/ mnc-TiN8), all of which are estimated to be energetically stable below 40.8 GPa. Phonon calculations and ab initio molecular dynamics simulations at finite temperature suggest that these nitrides are dynamically stable. We find that the nitrogen in these metal nitrides can polymerize into two types of poly-[Formula: see text] chains, in which the π electrons are either extended or localized. Owing to the presence of the polymerized N4 chains, these metal nitrides can store a large amount of chemical energy, which is estimated to range from 4.50 to 2.71 kJ/g. Moreover, these compounds have high detonation pressures and detonation velocities, exceeding those of conventional explosives such as TNT and HMX.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信