还原电池中新型阴极凸的数学模型

Z. He, T. Xia, W. Xiong, Q. Shen, B. Li
{"title":"还原电池中新型阴极凸的数学模型","authors":"Z. He, T. Xia, W. Xiong, Q. Shen, B. Li","doi":"10.1155/2013/196891","DOIUrl":null,"url":null,"abstract":"A less magnitude of liquid aluminum deformation is required to shorten the anode-cathode distance so as to lower the electric energy consumption of the aluminum reduction cell. A mathematical model aimed to describe the electrolyte/aluminum two-phase flow in reduction cells, based on the computational fluid dynamics method, was developed to study the impacts of the cathode convexes on the electrolyte/aluminum interface deformation. The results showed that the magnitude of the two-phase interface deformation was reduced for about 17.2% with the novel cathode convexes; while at the same time, the washout of the melt on the ledge was also enhanced.","PeriodicalId":16342,"journal":{"name":"Journal of Metallurgy","volume":"26 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mathematical Models for the Novel Cathode Convexes in a Reduction Cell\",\"authors\":\"Z. He, T. Xia, W. Xiong, Q. Shen, B. Li\",\"doi\":\"10.1155/2013/196891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A less magnitude of liquid aluminum deformation is required to shorten the anode-cathode distance so as to lower the electric energy consumption of the aluminum reduction cell. A mathematical model aimed to describe the electrolyte/aluminum two-phase flow in reduction cells, based on the computational fluid dynamics method, was developed to study the impacts of the cathode convexes on the electrolyte/aluminum interface deformation. The results showed that the magnitude of the two-phase interface deformation was reduced for about 17.2% with the novel cathode convexes; while at the same time, the washout of the melt on the ledge was also enhanced.\",\"PeriodicalId\":16342,\"journal\":{\"name\":\"Journal of Metallurgy\",\"volume\":\"26 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/196891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/196891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了缩短铝电解槽的阳极-阴极距离,降低电解槽的电能消耗,需要减小铝液的变形幅度。基于计算流体力学方法,建立了还原电池中电解液/铝两相流动的数学模型,研究了阴极凸性对电解液/铝界面变形的影响。结果表明:新型阴极凸面使两相界面变形幅度减小了约17.2%;与此同时,岩架上熔体的冲刷也增强了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Models for the Novel Cathode Convexes in a Reduction Cell
A less magnitude of liquid aluminum deformation is required to shorten the anode-cathode distance so as to lower the electric energy consumption of the aluminum reduction cell. A mathematical model aimed to describe the electrolyte/aluminum two-phase flow in reduction cells, based on the computational fluid dynamics method, was developed to study the impacts of the cathode convexes on the electrolyte/aluminum interface deformation. The results showed that the magnitude of the two-phase interface deformation was reduced for about 17.2% with the novel cathode convexes; while at the same time, the washout of the melt on the ledge was also enhanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信