Z. Ye, Wenhui Cai, Mingwei Wang, Aixin Zhang, Wen-hua Zhou, Na Deng, Zimei Wei, Daxin Zhu
{"title":"基于混合鲸优化算法的关联规则挖掘","authors":"Z. Ye, Wenhui Cai, Mingwei Wang, Aixin Zhang, Wen-hua Zhou, Na Deng, Zimei Wei, Daxin Zhu","doi":"10.4018/ijdwm.308817","DOIUrl":null,"url":null,"abstract":"Association Rule Mining(ARM) is one of the most significant and active research areas in data mining. Recently, Whale Optimization Algorithm (WOA) has been successfully applied in the field of data mining, however, it easily falls into the local optimum. Therefore, an improved WOA based adaptive parameter strategy and Levy Flight mechanism (LWOA) is applied to mine association rules. Meanwhile, a hybrid strategy that blends two algorithms to balance the exploration and exploitation phases is put forward, that is, grey wolf optimization algorithm (GWO), artificial bee colony algorithm (ABC) and cuckoo search algorithm (CS) are devoted to improving the convergence of LWOA. The approach performs a global search and finds the association rules sets by modeling the rule mining task as a multi-objective problem that simultaneously meets support, confidence, lift, and certain factor, which is examined on multiple data sets. Experimental results verify that the proposed method has better mining performance compared to other algorithms involved in the paper.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Association Rule Mining Based on Hybrid Whale Optimization Algorithm\",\"authors\":\"Z. Ye, Wenhui Cai, Mingwei Wang, Aixin Zhang, Wen-hua Zhou, Na Deng, Zimei Wei, Daxin Zhu\",\"doi\":\"10.4018/ijdwm.308817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association Rule Mining(ARM) is one of the most significant and active research areas in data mining. Recently, Whale Optimization Algorithm (WOA) has been successfully applied in the field of data mining, however, it easily falls into the local optimum. Therefore, an improved WOA based adaptive parameter strategy and Levy Flight mechanism (LWOA) is applied to mine association rules. Meanwhile, a hybrid strategy that blends two algorithms to balance the exploration and exploitation phases is put forward, that is, grey wolf optimization algorithm (GWO), artificial bee colony algorithm (ABC) and cuckoo search algorithm (CS) are devoted to improving the convergence of LWOA. The approach performs a global search and finds the association rules sets by modeling the rule mining task as a multi-objective problem that simultaneously meets support, confidence, lift, and certain factor, which is examined on multiple data sets. Experimental results verify that the proposed method has better mining performance compared to other algorithms involved in the paper.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.308817\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.308817","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Association Rule Mining Based on Hybrid Whale Optimization Algorithm
Association Rule Mining(ARM) is one of the most significant and active research areas in data mining. Recently, Whale Optimization Algorithm (WOA) has been successfully applied in the field of data mining, however, it easily falls into the local optimum. Therefore, an improved WOA based adaptive parameter strategy and Levy Flight mechanism (LWOA) is applied to mine association rules. Meanwhile, a hybrid strategy that blends two algorithms to balance the exploration and exploitation phases is put forward, that is, grey wolf optimization algorithm (GWO), artificial bee colony algorithm (ABC) and cuckoo search algorithm (CS) are devoted to improving the convergence of LWOA. The approach performs a global search and finds the association rules sets by modeling the rule mining task as a multi-objective problem that simultaneously meets support, confidence, lift, and certain factor, which is examined on multiple data sets. Experimental results verify that the proposed method has better mining performance compared to other algorithms involved in the paper.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving