{"title":"纳米材料和纳米制造","authors":"Nuo Yang","doi":"10.30919/esmm5f206","DOIUrl":null,"url":null,"abstract":"Nuo Yang is Chutian Distinguished Professor in School of Energy and Power Engineering, Huazhong University of Science and Technology. His research includes theories, simulations and measurements in micro/nanoscale, and his interests mainly focus on, but not limited to, phonon engineering, energy carriers' transport and energy conversions, such as thermal transport, thermal modulation, thermal device, thermal interfacial resistance, thermoelectrics and solar water evaporation/ condensation etc This issue has nine interesting papers dedicated to nano-materials and nano-structured materials, including 0D quantum dots, 1D nanotubes, 2D graphene, thin films, nano-porous structures, nano-composites, and interfaces. Nano-materials and nano-structured materials have been widely studied for their brand new properties which are different from properties of their bulk counterparts, due to large surface-area-to-volume ratio, size effects, quantum confinements and so on. Nanotubes are typical 1D materials. Song et al. (DOI: 10.30919/esmm5f193) explored and demonstrated that the multi-walled carbon nanotubes (MWCNTs) could serve as a promising adsorbent for methyl blue removal in wastewater. The MWCNTs-polyethylenimine adsorbent contributes to an enhancement of the adsorption capacity in methyl blue removal, where the maximum adsorption capacity is as high as 418 mg/g at 35 °C. As a review, Liu et al. (DOI: 10.30919/esmm5f199) go through the carbon nanotube and boron nitride nanotube in structure, property and synthesis methods. For 2D material, Tang et al. (DOI: 10.30919/esmm5f203) simulated the thermal conductivity of recently synthesized 2D materials, namely graphene embedded with periodic four-membered and eightmembered rings (GFERs). Both the length and the temperature dependence of GFERs' thermal conductivity are found to be different from that of the pristine graphene. An obvious thermal rectification in graphene-GFERs heterostructures is also found. The abundant findings on nano-materials benefit from the progress of nano-manufacturing. Vikram et al. (DOI: 10.30919/esmm5f205) synthesized lead sulfide (PbS) quantum dots (~ 6 nm) using a costeffective and facile chemical synthesis method, namely ionic reaction. The strong size quantization was observed from cyclic voltammetry and absorption spectroscopy. Borate et al. (DOI: 10.30919/esmm5f202) investigated the effect of working gas pressure on the adhesive, structural, optical, morphology and electrical properties of Mo thin films to achieve better sputtering conditions. Furthermore, the performance of the fabricated Mo thin film was studied by using it as a working electrode in electrochemical deposition of Cu ZnSnS thin films. 2 4","PeriodicalId":11851,"journal":{"name":"ES Materials & Manufacturing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nano-materials and Nano-manufacturing\",\"authors\":\"Nuo Yang\",\"doi\":\"10.30919/esmm5f206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuo Yang is Chutian Distinguished Professor in School of Energy and Power Engineering, Huazhong University of Science and Technology. His research includes theories, simulations and measurements in micro/nanoscale, and his interests mainly focus on, but not limited to, phonon engineering, energy carriers' transport and energy conversions, such as thermal transport, thermal modulation, thermal device, thermal interfacial resistance, thermoelectrics and solar water evaporation/ condensation etc This issue has nine interesting papers dedicated to nano-materials and nano-structured materials, including 0D quantum dots, 1D nanotubes, 2D graphene, thin films, nano-porous structures, nano-composites, and interfaces. Nano-materials and nano-structured materials have been widely studied for their brand new properties which are different from properties of their bulk counterparts, due to large surface-area-to-volume ratio, size effects, quantum confinements and so on. Nanotubes are typical 1D materials. Song et al. (DOI: 10.30919/esmm5f193) explored and demonstrated that the multi-walled carbon nanotubes (MWCNTs) could serve as a promising adsorbent for methyl blue removal in wastewater. The MWCNTs-polyethylenimine adsorbent contributes to an enhancement of the adsorption capacity in methyl blue removal, where the maximum adsorption capacity is as high as 418 mg/g at 35 °C. As a review, Liu et al. (DOI: 10.30919/esmm5f199) go through the carbon nanotube and boron nitride nanotube in structure, property and synthesis methods. For 2D material, Tang et al. (DOI: 10.30919/esmm5f203) simulated the thermal conductivity of recently synthesized 2D materials, namely graphene embedded with periodic four-membered and eightmembered rings (GFERs). Both the length and the temperature dependence of GFERs' thermal conductivity are found to be different from that of the pristine graphene. An obvious thermal rectification in graphene-GFERs heterostructures is also found. The abundant findings on nano-materials benefit from the progress of nano-manufacturing. Vikram et al. (DOI: 10.30919/esmm5f205) synthesized lead sulfide (PbS) quantum dots (~ 6 nm) using a costeffective and facile chemical synthesis method, namely ionic reaction. The strong size quantization was observed from cyclic voltammetry and absorption spectroscopy. Borate et al. (DOI: 10.30919/esmm5f202) investigated the effect of working gas pressure on the adhesive, structural, optical, morphology and electrical properties of Mo thin films to achieve better sputtering conditions. Furthermore, the performance of the fabricated Mo thin film was studied by using it as a working electrode in electrochemical deposition of Cu ZnSnS thin films. 2 4\",\"PeriodicalId\":11851,\"journal\":{\"name\":\"ES Materials & Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ES Materials & Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30919/esmm5f206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ES Materials & Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30919/esmm5f206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nuo Yang is Chutian Distinguished Professor in School of Energy and Power Engineering, Huazhong University of Science and Technology. His research includes theories, simulations and measurements in micro/nanoscale, and his interests mainly focus on, but not limited to, phonon engineering, energy carriers' transport and energy conversions, such as thermal transport, thermal modulation, thermal device, thermal interfacial resistance, thermoelectrics and solar water evaporation/ condensation etc This issue has nine interesting papers dedicated to nano-materials and nano-structured materials, including 0D quantum dots, 1D nanotubes, 2D graphene, thin films, nano-porous structures, nano-composites, and interfaces. Nano-materials and nano-structured materials have been widely studied for their brand new properties which are different from properties of their bulk counterparts, due to large surface-area-to-volume ratio, size effects, quantum confinements and so on. Nanotubes are typical 1D materials. Song et al. (DOI: 10.30919/esmm5f193) explored and demonstrated that the multi-walled carbon nanotubes (MWCNTs) could serve as a promising adsorbent for methyl blue removal in wastewater. The MWCNTs-polyethylenimine adsorbent contributes to an enhancement of the adsorption capacity in methyl blue removal, where the maximum adsorption capacity is as high as 418 mg/g at 35 °C. As a review, Liu et al. (DOI: 10.30919/esmm5f199) go through the carbon nanotube and boron nitride nanotube in structure, property and synthesis methods. For 2D material, Tang et al. (DOI: 10.30919/esmm5f203) simulated the thermal conductivity of recently synthesized 2D materials, namely graphene embedded with periodic four-membered and eightmembered rings (GFERs). Both the length and the temperature dependence of GFERs' thermal conductivity are found to be different from that of the pristine graphene. An obvious thermal rectification in graphene-GFERs heterostructures is also found. The abundant findings on nano-materials benefit from the progress of nano-manufacturing. Vikram et al. (DOI: 10.30919/esmm5f205) synthesized lead sulfide (PbS) quantum dots (~ 6 nm) using a costeffective and facile chemical synthesis method, namely ionic reaction. The strong size quantization was observed from cyclic voltammetry and absorption spectroscopy. Borate et al. (DOI: 10.30919/esmm5f202) investigated the effect of working gas pressure on the adhesive, structural, optical, morphology and electrical properties of Mo thin films to achieve better sputtering conditions. Furthermore, the performance of the fabricated Mo thin film was studied by using it as a working electrode in electrochemical deposition of Cu ZnSnS thin films. 2 4