Xuezhi Yu, Chunyang Ye, Bingzhuo Li, Hui Zhou, Mengxing Huang
{"title":"动态满足约束服务组合的深度q -学习网络","authors":"Xuezhi Yu, Chunyang Ye, Bingzhuo Li, Hui Zhou, Mengxing Huang","doi":"10.4018/IJWSR.2020100104","DOIUrl":null,"url":null,"abstract":"Traditional service composition methods usually address the constraint-satisfied service composition (CSSC) problem with static web services. Such solutions however are inapplicable to the dynamic scenarios where the services or their QoS values may change over time. Some recent studies are proposed to use reinforcement learning, especially, integrate the idea of Q-learning, to solve the dynamic CSSC problem. However, such Q-learning algorithm relies on Q-table to search for optimal candidate services. When the problem of CSSC becomes complex, the number of states in Q-table is very large and the cost of the Q-learning model will become extremely high. In this paper, the authors propose a novel solution to address this issue. By training a DQN network to replace the Q-table, this solution can effectively model the uncertainty of services with fine-grained QoS attributes and choose suitable candidate services to compose on the fly in the dynamic scenarios. Experimental results on both artificial and real datasets demonstrate the effectiveness of the method.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"28 1","pages":"55-75"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Deep Q-Learning Network for Dynamic Constraint-Satisfied Service Composition\",\"authors\":\"Xuezhi Yu, Chunyang Ye, Bingzhuo Li, Hui Zhou, Mengxing Huang\",\"doi\":\"10.4018/IJWSR.2020100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional service composition methods usually address the constraint-satisfied service composition (CSSC) problem with static web services. Such solutions however are inapplicable to the dynamic scenarios where the services or their QoS values may change over time. Some recent studies are proposed to use reinforcement learning, especially, integrate the idea of Q-learning, to solve the dynamic CSSC problem. However, such Q-learning algorithm relies on Q-table to search for optimal candidate services. When the problem of CSSC becomes complex, the number of states in Q-table is very large and the cost of the Q-learning model will become extremely high. In this paper, the authors propose a novel solution to address this issue. By training a DQN network to replace the Q-table, this solution can effectively model the uncertainty of services with fine-grained QoS attributes and choose suitable candidate services to compose on the fly in the dynamic scenarios. Experimental results on both artificial and real datasets demonstrate the effectiveness of the method.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"28 1\",\"pages\":\"55-75\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2020100104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2020100104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Deep Q-Learning Network for Dynamic Constraint-Satisfied Service Composition
Traditional service composition methods usually address the constraint-satisfied service composition (CSSC) problem with static web services. Such solutions however are inapplicable to the dynamic scenarios where the services or their QoS values may change over time. Some recent studies are proposed to use reinforcement learning, especially, integrate the idea of Q-learning, to solve the dynamic CSSC problem. However, such Q-learning algorithm relies on Q-table to search for optimal candidate services. When the problem of CSSC becomes complex, the number of states in Q-table is very large and the cost of the Q-learning model will become extremely high. In this paper, the authors propose a novel solution to address this issue. By training a DQN network to replace the Q-table, this solution can effectively model the uncertainty of services with fine-grained QoS attributes and choose suitable candidate services to compose on the fly in the dynamic scenarios. Experimental results on both artificial and real datasets demonstrate the effectiveness of the method.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.