{"title":"基于鲁棒扫描统计量的不规则小结节检测。","authors":"Ali Abolhassani, Marcos O Prates, Safieh Mahmoodi","doi":"10.1007/s12561-022-09353-7","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial scan statistics based on the Poisson and binomial models are the most common methods to detect spatial clusters in disease surveillance. These models rely on Monte-Carlo simulation which are time consuming. Moreover, frequently, datasets present over-dispersion which cannot be handled by them. Thus, we have the following goals. First, we propose irregularly shaped spatial scan for the Bell, Poisson, and binomial. The Bell distribution has just one parameter but it is capable of handling over-dispersed datasets. Second, we apply these scan statistics to big maps. A fast version, without Monte-Carlo simulation, for the proposed Poisson and binomial scans is introduced. Intensive simulation studies are carried out to assess the quality of the proposals. In addition, we show the time improvement of the fast scan versions over their traditional ones. Finally, we end the paper with an application on the detection of irregular shape small nodules in a medical image.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12561-022-09353-7.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 1","pages":"141-162"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415267/pdf/","citationCount":"1","resultStr":"{\"title\":\"Irregular Shaped Small Nodule Detection Using a Robust Scan Statistic.\",\"authors\":\"Ali Abolhassani, Marcos O Prates, Safieh Mahmoodi\",\"doi\":\"10.1007/s12561-022-09353-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spatial scan statistics based on the Poisson and binomial models are the most common methods to detect spatial clusters in disease surveillance. These models rely on Monte-Carlo simulation which are time consuming. Moreover, frequently, datasets present over-dispersion which cannot be handled by them. Thus, we have the following goals. First, we propose irregularly shaped spatial scan for the Bell, Poisson, and binomial. The Bell distribution has just one parameter but it is capable of handling over-dispersed datasets. Second, we apply these scan statistics to big maps. A fast version, without Monte-Carlo simulation, for the proposed Poisson and binomial scans is introduced. Intensive simulation studies are carried out to assess the quality of the proposals. In addition, we show the time improvement of the fast scan versions over their traditional ones. Finally, we end the paper with an application on the detection of irregular shape small nodules in a medical image.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12561-022-09353-7.</p>\",\"PeriodicalId\":45094,\"journal\":{\"name\":\"Statistics in Biosciences\",\"volume\":\"15 1\",\"pages\":\"141-162\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415267/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12561-022-09353-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-022-09353-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Irregular Shaped Small Nodule Detection Using a Robust Scan Statistic.
The spatial scan statistics based on the Poisson and binomial models are the most common methods to detect spatial clusters in disease surveillance. These models rely on Monte-Carlo simulation which are time consuming. Moreover, frequently, datasets present over-dispersion which cannot be handled by them. Thus, we have the following goals. First, we propose irregularly shaped spatial scan for the Bell, Poisson, and binomial. The Bell distribution has just one parameter but it is capable of handling over-dispersed datasets. Second, we apply these scan statistics to big maps. A fast version, without Monte-Carlo simulation, for the proposed Poisson and binomial scans is introduced. Intensive simulation studies are carried out to assess the quality of the proposals. In addition, we show the time improvement of the fast scan versions over their traditional ones. Finally, we end the paper with an application on the detection of irregular shape small nodules in a medical image.
Supplementary information: The online version contains supplementary material available at 10.1007/s12561-022-09353-7.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.