算子单调函数的新不等式

IF 0.5 Q3 MATHEMATICS
S. Dragomir
{"title":"算子单调函数的新不等式","authors":"S. Dragomir","doi":"10.52846/ami.v48i1.1410","DOIUrl":null,"url":null,"abstract":"\"In this paper we prove that, if f:[0,∞)→R is operator monotone on [0,∞), then for all A, B such that 0<α≤A≤β<γ≤B≤δ for some positive constants α, β, γ, δ, 0≤(γ-β)((f(δ)-f(β))/(δ-β))≤f(B)-f(A)≤(δ-α)((f(γ)-f(α))/(γ-α)). In particular, we have the refinement and reverse of the celebrated Löwner-Heinz inequality 0<(γ-β)((δ^{r}-β^{r})/(δ-β))≤B^{r}-A^{r}≤(δ-α)((γ^{r}-α^{r})/(γ-α)) for all r∈(0,1].\"","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"36 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New inequalities for operator monotone functions\",\"authors\":\"S. Dragomir\",\"doi\":\"10.52846/ami.v48i1.1410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper we prove that, if f:[0,∞)→R is operator monotone on [0,∞), then for all A, B such that 0<α≤A≤β<γ≤B≤δ for some positive constants α, β, γ, δ, 0≤(γ-β)((f(δ)-f(β))/(δ-β))≤f(B)-f(A)≤(δ-α)((f(γ)-f(α))/(γ-α)). In particular, we have the refinement and reverse of the celebrated Löwner-Heinz inequality 0<(γ-β)((δ^{r}-β^{r})/(δ-β))≤B^{r}-A^{r}≤(δ-α)((γ^{r}-α^{r})/(γ-α)) for all r∈(0,1].\\\"\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v48i1.1410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v48i1.1410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

”在本文中,我们证明,如果f:[0,∞)→R是运营商单调在[0,∞),然后对所有A, B, 0 <α≤≤的β<γB≤≤δ一些积极的常量α、β、γ、δ,0≤(γ-β)((f(δ)- f(β))/(δ-β))f - f (A) (B)≤≤(δ-α)((f(γ)- f(α))/(γ-α))。特别是,我们有著名的细化和反向Lowner-Heinz不等式0 <(γ-β)((δ^ {r} -β^ {r}) /(δ-β))≤B ^ {r}——^ {r}≤(δ-α)((γ^ {r} -α^ {r}) /(γ-α))为所有r∈(0,1)。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New inequalities for operator monotone functions
"In this paper we prove that, if f:[0,∞)→R is operator monotone on [0,∞), then for all A, B such that 0<α≤A≤β<γ≤B≤δ for some positive constants α, β, γ, δ, 0≤(γ-β)((f(δ)-f(β))/(δ-β))≤f(B)-f(A)≤(δ-α)((f(γ)-f(α))/(γ-α)). In particular, we have the refinement and reverse of the celebrated Löwner-Heinz inequality 0<(γ-β)((δ^{r}-β^{r})/(δ-β))≤B^{r}-A^{r}≤(δ-α)((γ^{r}-α^{r})/(γ-α)) for all r∈(0,1]."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信