单电荷电子与金纳米粒子和有机单层

O. Pluchery, L. Caillard, A. Rynder, F. Rochet, Yingjie Zhang, M. Salmeron, Y. Chabal
{"title":"单电荷电子与金纳米粒子和有机单层","authors":"O. Pluchery, L. Caillard, A. Rynder, F. Rochet, Yingjie Zhang, M. Salmeron, Y. Chabal","doi":"10.1557/OPL.2016.40","DOIUrl":null,"url":null,"abstract":"Gold nanoparticles can be used as ultimate electrical materials for storing electrons or controlling their flow for the next generation nano-electronic devices. These particles are the core element of assemblies where the electrical current is reduced to the smallest possible since electrons are controlled one by one by using the Coulomb blockade phenomenon. We prepared colloidal gold nanoparticles beteween 4 and 15 nm and grafted them on a grafted organic monolayer (GOM) on silicon. GOM are highly ordered monolayers prepared by hydrosilylation of alkene molecules and subsequently modified with an amine group so that gold nanoparticles can be firmly immobilized on top of the layer. We discuss several electrical properties at a single electron level. Using the conductive tip of KPFM, we were also able to reveal the spontaneous charging behavior of the gold nanoparticles so that the local work function of a 10 nm gold nanoparticle is only 3.7 eV. By placing an STM tip above a nanoparticle, Coulomb blockade allows controlling the number of electrons simultaneously injected in the nanoparticle. This opens the way for new kinds of single electron memories or single electron transistors.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"76 1","pages":"60-72"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Single charge electronics with gold nanoparticles and organic monolayers\",\"authors\":\"O. Pluchery, L. Caillard, A. Rynder, F. Rochet, Yingjie Zhang, M. Salmeron, Y. Chabal\",\"doi\":\"10.1557/OPL.2016.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold nanoparticles can be used as ultimate electrical materials for storing electrons or controlling their flow for the next generation nano-electronic devices. These particles are the core element of assemblies where the electrical current is reduced to the smallest possible since electrons are controlled one by one by using the Coulomb blockade phenomenon. We prepared colloidal gold nanoparticles beteween 4 and 15 nm and grafted them on a grafted organic monolayer (GOM) on silicon. GOM are highly ordered monolayers prepared by hydrosilylation of alkene molecules and subsequently modified with an amine group so that gold nanoparticles can be firmly immobilized on top of the layer. We discuss several electrical properties at a single electron level. Using the conductive tip of KPFM, we were also able to reveal the spontaneous charging behavior of the gold nanoparticles so that the local work function of a 10 nm gold nanoparticle is only 3.7 eV. By placing an STM tip above a nanoparticle, Coulomb blockade allows controlling the number of electrons simultaneously injected in the nanoparticle. This opens the way for new kinds of single electron memories or single electron transistors.\",\"PeriodicalId\":18884,\"journal\":{\"name\":\"MRS Proceedings\",\"volume\":\"76 1\",\"pages\":\"60-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/OPL.2016.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/OPL.2016.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

金纳米粒子可以作为下一代纳米电子器件中存储电子或控制电子流动的终极电气材料。这些粒子是组件的核心元素,其中电流减少到尽可能小,因为电子是通过使用库仑封锁现象一个接一个地控制的。我们制备了4 ~ 15 nm的胶体金纳米颗粒,并将其接枝到硅上的接枝有机单层(GOM)上。GOM是由烯烃分子的硅氢化反应制备的高度有序的单层,随后用胺基修饰,以便金纳米颗粒可以牢固地固定在层的顶部。我们在单电子水平上讨论几种电学性质。利用KPFM的导电尖端,我们还能够揭示金纳米粒子的自发充电行为,因此10 nm的金纳米粒子的局部功函数仅为3.7 eV。通过在纳米颗粒上方放置STM尖端,库仑封锁可以控制同时注入纳米颗粒中的电子数量。这为新型单电子存储器或单电子晶体管开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single charge electronics with gold nanoparticles and organic monolayers
Gold nanoparticles can be used as ultimate electrical materials for storing electrons or controlling their flow for the next generation nano-electronic devices. These particles are the core element of assemblies where the electrical current is reduced to the smallest possible since electrons are controlled one by one by using the Coulomb blockade phenomenon. We prepared colloidal gold nanoparticles beteween 4 and 15 nm and grafted them on a grafted organic monolayer (GOM) on silicon. GOM are highly ordered monolayers prepared by hydrosilylation of alkene molecules and subsequently modified with an amine group so that gold nanoparticles can be firmly immobilized on top of the layer. We discuss several electrical properties at a single electron level. Using the conductive tip of KPFM, we were also able to reveal the spontaneous charging behavior of the gold nanoparticles so that the local work function of a 10 nm gold nanoparticle is only 3.7 eV. By placing an STM tip above a nanoparticle, Coulomb blockade allows controlling the number of electrons simultaneously injected in the nanoparticle. This opens the way for new kinds of single electron memories or single electron transistors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信