微笑校准:一种基于Mellin变换的挥发性面校准方法

IF 2.5 Q2 ECONOMICS
M. Rodrigo , A. Lo
{"title":"微笑校准:一种基于Mellin变换的挥发性面校准方法","authors":"M. Rodrigo ,&nbsp;A. Lo","doi":"10.1016/j.ecosta.2022.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>The implied volatility<span><span> in the Black-Scholes framework is not a constant but a function of both the strike price (“smile/skew”) and the time to expiry. A popular approach to recovering the volatility surface is through the use of deterministic volatility function models via Dupire’s equation. A new method for volatility surface calibration based on the Mellin transform is proposed. An explicit formula for the volatility surface is obtained in terms of the Mellin transform of the </span>call option price with respect to the strike price, and a numerical algorithm is provided. Results of numerical simulations are presented and the stability of the method is numerically verified. The proposed Mellin transform approach provides a simpler and more direct fitting of generalised forms of the volatility surface given previously in the literature.</span></div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"36 ","pages":"Pages 73-80"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrating with a smile: A Mellin transform approach to volatility surface calibration\",\"authors\":\"M. Rodrigo ,&nbsp;A. Lo\",\"doi\":\"10.1016/j.ecosta.2022.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The implied volatility<span><span> in the Black-Scholes framework is not a constant but a function of both the strike price (“smile/skew”) and the time to expiry. A popular approach to recovering the volatility surface is through the use of deterministic volatility function models via Dupire’s equation. A new method for volatility surface calibration based on the Mellin transform is proposed. An explicit formula for the volatility surface is obtained in terms of the Mellin transform of the </span>call option price with respect to the strike price, and a numerical algorithm is provided. Results of numerical simulations are presented and the stability of the method is numerically verified. The proposed Mellin transform approach provides a simpler and more direct fitting of generalised forms of the volatility surface given previously in the literature.</span></div></div>\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"36 \",\"pages\":\"Pages 73-80\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452306222000739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

布莱克-斯科尔斯框架中的隐含波动率不是一个常数,而是执行价格(“微笑/倾斜”)和到期时间的函数。一种流行的恢复波动面的方法是通过Dupire方程使用确定性波动函数模型。提出了一种基于Mellin变换的挥发性曲面标定方法。利用看涨期权价格相对于执行价格的梅林变换,给出了波动面的显式表达式,并给出了数值算法。给出了数值模拟结果,并对该方法的稳定性进行了数值验证。提出的Mellin变换方法提供了先前文献中给出的波动面广义形式的更简单和更直接的拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrating with a smile: A Mellin transform approach to volatility surface calibration
The implied volatility in the Black-Scholes framework is not a constant but a function of both the strike price (“smile/skew”) and the time to expiry. A popular approach to recovering the volatility surface is through the use of deterministic volatility function models via Dupire’s equation. A new method for volatility surface calibration based on the Mellin transform is proposed. An explicit formula for the volatility surface is obtained in terms of the Mellin transform of the call option price with respect to the strike price, and a numerical algorithm is provided. Results of numerical simulations are presented and the stability of the method is numerically verified. The proposed Mellin transform approach provides a simpler and more direct fitting of generalised forms of the volatility surface given previously in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信