序列决策问题的可数策略集

J. Rolph, R. Strauch
{"title":"序列决策问题的可数策略集","authors":"J. Rolph, R. Strauch","doi":"10.1214/AOMS/1177690888","DOIUrl":null,"url":null,"abstract":"Abstract : In denumerable state, denumerable action sequential decision problems in which the reward function has uniformly bounded 2nd moment, the optimal reward for the decisionmaker who restricts himself to the countable set of stationary policies consisting of those which choose some arbitrary action at all but a finite number of states will be the same as the optimal reward for the decisionmaker who optimizes over all stationary policies. Under some further restriction, he can do almost as well simply by solving a large finite state truncation of the original problem. (Author)","PeriodicalId":50764,"journal":{"name":"Annals of Mathematical Statistics","volume":"49 1","pages":"2078-2082"},"PeriodicalIF":0.0000,"publicationDate":"1972-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Countable Policy Set for Sequential Decision Problems\",\"authors\":\"J. Rolph, R. Strauch\",\"doi\":\"10.1214/AOMS/1177690888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract : In denumerable state, denumerable action sequential decision problems in which the reward function has uniformly bounded 2nd moment, the optimal reward for the decisionmaker who restricts himself to the countable set of stationary policies consisting of those which choose some arbitrary action at all but a finite number of states will be the same as the optimal reward for the decisionmaker who optimizes over all stationary policies. Under some further restriction, he can do almost as well simply by solving a large finite state truncation of the original problem. (Author)\",\"PeriodicalId\":50764,\"journal\":{\"name\":\"Annals of Mathematical Statistics\",\"volume\":\"49 1\",\"pages\":\"2078-2082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/AOMS/1177690888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/AOMS/1177690888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要:在奖励函数具有一致有界第二矩的可数状态、可数动作序列决策问题中,决策者将自己限制在由有限个数的状态中选择任意动作组成的可数平稳策略集合中,其最优奖励将与对所有平稳策略进行优化的决策者的最优奖励相同。在一些进一步的限制下,他几乎可以通过简单地解决原始问题的一个大的有限状态截断来做得很好。(作者)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Countable Policy Set for Sequential Decision Problems
Abstract : In denumerable state, denumerable action sequential decision problems in which the reward function has uniformly bounded 2nd moment, the optimal reward for the decisionmaker who restricts himself to the countable set of stationary policies consisting of those which choose some arbitrary action at all but a finite number of states will be the same as the optimal reward for the decisionmaker who optimizes over all stationary policies. Under some further restriction, he can do almost as well simply by solving a large finite state truncation of the original problem. (Author)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信