硅时代晚期及以后的预测技术模型

Q1 Computer Science
Yu Cao, A. Balijepalli, S. Sinha, Chi-Chao Wang, Wenping Wang, Wei Zhao
{"title":"硅时代晚期及以后的预测技术模型","authors":"Yu Cao, A. Balijepalli, S. Sinha, Chi-Chao Wang, Wenping Wang, Wei Zhao","doi":"10.1561/1000000012","DOIUrl":null,"url":null,"abstract":"The aggressive scaling of CMOS technology has inevitably led to vastly increased power dissipation, process variability and reliability degradation, posing tremendous challenges to robust circuit design. To continue the success of integrated circuits, advanced design research must start in parallel with or even ahead of technology development. This new paradigm requires the Predictive Technology Model (PTM) for future technology generations, including nanoscale CMOS and post-silicon devices. This paper presents a comprehensive set of predictive modeling developments. Starting from the PTM of traditional CMOS devices, it extends to CMOS alternatives at the end of the silicon roadmap, such as strained Si, high-k/metal gate, and FinFET devices. The impact of process variation and the aging effect is further captured by modeling the device parameters under the influence. Beyond the silicon roadmap, the PTM outreaches to revolutionary devices, especially carbon-based transistor and interconnect, in order to support explorative design research. Overall, these predictive device models enable early stage design exploration with increasing technology diversity, helping shed light on the opportunities and challenges in the nanoelectronics era.","PeriodicalId":42137,"journal":{"name":"Foundations and Trends in Electronic Design Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Predictive Technology Model in the Late Silicon Era and Beyond\",\"authors\":\"Yu Cao, A. Balijepalli, S. Sinha, Chi-Chao Wang, Wenping Wang, Wei Zhao\",\"doi\":\"10.1561/1000000012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aggressive scaling of CMOS technology has inevitably led to vastly increased power dissipation, process variability and reliability degradation, posing tremendous challenges to robust circuit design. To continue the success of integrated circuits, advanced design research must start in parallel with or even ahead of technology development. This new paradigm requires the Predictive Technology Model (PTM) for future technology generations, including nanoscale CMOS and post-silicon devices. This paper presents a comprehensive set of predictive modeling developments. Starting from the PTM of traditional CMOS devices, it extends to CMOS alternatives at the end of the silicon roadmap, such as strained Si, high-k/metal gate, and FinFET devices. The impact of process variation and the aging effect is further captured by modeling the device parameters under the influence. Beyond the silicon roadmap, the PTM outreaches to revolutionary devices, especially carbon-based transistor and interconnect, in order to support explorative design research. Overall, these predictive device models enable early stage design exploration with increasing technology diversity, helping shed light on the opportunities and challenges in the nanoelectronics era.\",\"PeriodicalId\":42137,\"journal\":{\"name\":\"Foundations and Trends in Electronic Design Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Electronic Design Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/1000000012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Electronic Design Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1000000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 10

摘要

CMOS技术的积极扩展不可避免地导致功耗、工艺可变性和可靠性下降的大幅增加,对稳健的电路设计提出了巨大的挑战。为了使集成电路继续取得成功,先进的设计研究必须与技术发展并行,甚至先于技术发展。这种新模式需要未来技术世代的预测技术模型(PTM),包括纳米级CMOS和后硅器件。本文介绍了一套全面的预测建模发展。从传统CMOS器件的PTM开始,它延伸到硅路线图末端的CMOS替代品,如应变Si,高k/金属栅极和FinFET器件。通过对受工艺变化和老化效应影响的器件参数进行建模,进一步捕捉工艺变化和老化效应的影响。除了硅路线图之外,PTM还延伸到革命性器件,特别是碳基晶体管和互连,以支持探索性设计研究。总的来说,这些预测器件模型使早期设计探索具有越来越多的技术多样性,有助于揭示纳米电子时代的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Predictive Technology Model in the Late Silicon Era and Beyond
The aggressive scaling of CMOS technology has inevitably led to vastly increased power dissipation, process variability and reliability degradation, posing tremendous challenges to robust circuit design. To continue the success of integrated circuits, advanced design research must start in parallel with or even ahead of technology development. This new paradigm requires the Predictive Technology Model (PTM) for future technology generations, including nanoscale CMOS and post-silicon devices. This paper presents a comprehensive set of predictive modeling developments. Starting from the PTM of traditional CMOS devices, it extends to CMOS alternatives at the end of the silicon roadmap, such as strained Si, high-k/metal gate, and FinFET devices. The impact of process variation and the aging effect is further captured by modeling the device parameters under the influence. Beyond the silicon roadmap, the PTM outreaches to revolutionary devices, especially carbon-based transistor and interconnect, in order to support explorative design research. Overall, these predictive device models enable early stage design exploration with increasing technology diversity, helping shed light on the opportunities and challenges in the nanoelectronics era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Electronic Design Automation
Foundations and Trends in Electronic Design Automation ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
0
期刊介绍: Foundations and Trends® in Electronic Design Automation publishes survey and tutorial articles in the following topics: - System Level Design - Behavioral Synthesis - Logic Design - Verification - Test - Physical Design - Circuit Level Design - Reconfigurable Systems - Analog Design Each issue of Foundations and Trends® in Electronic Design Automation comprises a 50-100 page monograph written by research leaders in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信