一个可扩展的优化器,用于在GPU上的可移植数据放置

Guoyang Chen, Bo Wu, Dong Li, Xipeng Shen
{"title":"一个可扩展的优化器,用于在GPU上的可移植数据放置","authors":"Guoyang Chen, Bo Wu, Dong Li, Xipeng Shen","doi":"10.1109/MICRO.2014.20","DOIUrl":null,"url":null,"abstract":"GPU is often equipped with complex memory systems, including globalmemory, texture memory, shared memory, constant memory, and variouslevels of cache. Where to place the data is important for theperformance of a GPU program. However, the decision is difficult for aprogrammer to make because of architecture complexity and thesensitivity of suitable data placements to input and architecturechanges.This paper presents PORPLE, a portable data placement engine thatenables a new way to solve the data placement problem. PORPLE consistsof a mini specification language, a source-to-source compiler, and a runtime data placer. The language allows an easy description of amemory system; the compiler transforms a GPU program into a formamenable to runtime profiling and data placement; the placer, based onthe memory description and data access patterns, identifies on the flyappropriate placement schemes for data and places themaccordingly. PORPLE is distinctive in being adaptive to program inputsand architecture changes, being transparent to programmers (in mostcases), and being extensible to new memory architectures. Ourexperiments on three types of GPU systems show that PORPLE is able toconsistently find optimal or near-optimal placement despite the largedifferences among GPU architectures and program inputs, yielding up to2.08X (1.59X on average) speedups on a set of regular and irregularGPU benchmarks.","PeriodicalId":6591,"journal":{"name":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","volume":"47 1","pages":"88-100"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"PORPLE: An Extensible Optimizer for Portable Data Placement on GPU\",\"authors\":\"Guoyang Chen, Bo Wu, Dong Li, Xipeng Shen\",\"doi\":\"10.1109/MICRO.2014.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPU is often equipped with complex memory systems, including globalmemory, texture memory, shared memory, constant memory, and variouslevels of cache. Where to place the data is important for theperformance of a GPU program. However, the decision is difficult for aprogrammer to make because of architecture complexity and thesensitivity of suitable data placements to input and architecturechanges.This paper presents PORPLE, a portable data placement engine thatenables a new way to solve the data placement problem. PORPLE consistsof a mini specification language, a source-to-source compiler, and a runtime data placer. The language allows an easy description of amemory system; the compiler transforms a GPU program into a formamenable to runtime profiling and data placement; the placer, based onthe memory description and data access patterns, identifies on the flyappropriate placement schemes for data and places themaccordingly. PORPLE is distinctive in being adaptive to program inputsand architecture changes, being transparent to programmers (in mostcases), and being extensible to new memory architectures. Ourexperiments on three types of GPU systems show that PORPLE is able toconsistently find optimal or near-optimal placement despite the largedifferences among GPU architectures and program inputs, yielding up to2.08X (1.59X on average) speedups on a set of regular and irregularGPU benchmarks.\",\"PeriodicalId\":6591,\"journal\":{\"name\":\"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture\",\"volume\":\"47 1\",\"pages\":\"88-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICRO.2014.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRO.2014.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

GPU通常配备复杂的内存系统,包括全局内存、纹理内存、共享内存、常量内存和各种级别的缓存。在哪里放置数据对于GPU程序的性能很重要。然而,由于体系结构的复杂性和适当的数据放置输入和体系结构变化的敏感性,程序员很难做出决定。本文提出了便携式数据放置引擎PORPLE,为解决数据放置问题提供了一种新的途径。PORPLE由一个小型规范语言、一个源到源编译器和一个运行时数据放置器组成。这种语言可以很容易地描述记忆系统;编译器将GPU程序转换为可格式化的运行时分析和数据放置;放置程序基于内存描述和数据访问模式,动态地确定数据的适当放置方案并相应地放置它们。PORPLE在适应程序输入和体系结构变化、对程序员透明(在大多数情况下)以及可扩展到新的内存体系结构方面是与众不同的。我们在三种类型的GPU系统上的实验表明,尽管GPU架构和程序输入之间存在很大差异,但PORPLE能够始终找到最佳或接近最佳的位置,在一组常规和不规则的argpu基准测试中产生高达2.08倍(平均1.59倍)的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PORPLE: An Extensible Optimizer for Portable Data Placement on GPU
GPU is often equipped with complex memory systems, including globalmemory, texture memory, shared memory, constant memory, and variouslevels of cache. Where to place the data is important for theperformance of a GPU program. However, the decision is difficult for aprogrammer to make because of architecture complexity and thesensitivity of suitable data placements to input and architecturechanges.This paper presents PORPLE, a portable data placement engine thatenables a new way to solve the data placement problem. PORPLE consistsof a mini specification language, a source-to-source compiler, and a runtime data placer. The language allows an easy description of amemory system; the compiler transforms a GPU program into a formamenable to runtime profiling and data placement; the placer, based onthe memory description and data access patterns, identifies on the flyappropriate placement schemes for data and places themaccordingly. PORPLE is distinctive in being adaptive to program inputsand architecture changes, being transparent to programmers (in mostcases), and being extensible to new memory architectures. Ourexperiments on three types of GPU systems show that PORPLE is able toconsistently find optimal or near-optimal placement despite the largedifferences among GPU architectures and program inputs, yielding up to2.08X (1.59X on average) speedups on a set of regular and irregularGPU benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信