带势Schrödinger方程最优设计问题的渐近性

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Alden Waters, Ekaterina Merkurjev
{"title":"带势Schrödinger方程最优设计问题的渐近性","authors":"Alden Waters, Ekaterina Merkurjev","doi":"10.1155/2018/8162845","DOIUrl":null,"url":null,"abstract":"We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrödinger equation with a potential in L∞Ω, with Ω⊂Rd, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.","PeriodicalId":42964,"journal":{"name":"Journal of Optimization","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for Optimal Design Problems for the Schrödinger Equation with a Potential\",\"authors\":\"Alden Waters, Ekaterina Merkurjev\",\"doi\":\"10.1155/2018/8162845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrödinger equation with a potential in L∞Ω, with Ω⊂Rd, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.\",\"PeriodicalId\":42964,\"journal\":{\"name\":\"Journal of Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/8162845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/8162845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了最优可观察性问题,并使用谱理论证明了具有L∞Ω中一个位势的Schrödinger方程的时间渐近可观察性估计,其中Ω∧Rd。提出了一种利用时间渐近可观测常数对问题进行建模的简便方法。对于某些小势,我们证明了在给定条件下一个非零渐近可观测常数的存在性,并描述了它的显式性质和最优值。此外,我们给出了一个精确的数值模型来分析势阱的重要例子,包括修正谐振子的势阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for Optimal Design Problems for the Schrödinger Equation with a Potential
We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrödinger equation with a potential in L∞Ω, with Ω⊂Rd, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Optimization
Journal of Optimization ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信