{"title":"带势Schrödinger方程最优设计问题的渐近性","authors":"Alden Waters, Ekaterina Merkurjev","doi":"10.1155/2018/8162845","DOIUrl":null,"url":null,"abstract":"We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrödinger equation with a potential in L∞Ω, with Ω⊂Rd, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.","PeriodicalId":42964,"journal":{"name":"Journal of Optimization","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for Optimal Design Problems for the Schrödinger Equation with a Potential\",\"authors\":\"Alden Waters, Ekaterina Merkurjev\",\"doi\":\"10.1155/2018/8162845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrödinger equation with a potential in L∞Ω, with Ω⊂Rd, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.\",\"PeriodicalId\":42964,\"journal\":{\"name\":\"Journal of Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/8162845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/8162845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymptotics for Optimal Design Problems for the Schrödinger Equation with a Potential
We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrödinger equation with a potential in L∞Ω, with Ω⊂Rd, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.