{"title":"PanNet:用于泛锐化的深度网络架构","authors":"Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao Ding, J. Paisley","doi":"10.1109/ICCV.2017.193","DOIUrl":null,"url":null,"abstract":"We propose a deep network architecture for the pan-sharpening problem called PanNet. We incorporate domain-specific knowledge to design our PanNet architecture by focusing on the two aims of the pan-sharpening problem: spectral and spatial preservation. For spectral preservation, we add up-sampled multispectral images to the network output, which directly propagates the spectral information to the reconstructed image. To preserve spatial structure, we train our network parameters in the high-pass filtering domain rather than the image domain. We show that the trained network generalizes well to images from different satellites without needing retraining. Experiments show significant improvement over state-of-the-art methods visually and in terms of standard quality metrics.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"50 1","pages":"1753-1761"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"427","resultStr":"{\"title\":\"PanNet: A Deep Network Architecture for Pan-Sharpening\",\"authors\":\"Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao Ding, J. Paisley\",\"doi\":\"10.1109/ICCV.2017.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a deep network architecture for the pan-sharpening problem called PanNet. We incorporate domain-specific knowledge to design our PanNet architecture by focusing on the two aims of the pan-sharpening problem: spectral and spatial preservation. For spectral preservation, we add up-sampled multispectral images to the network output, which directly propagates the spectral information to the reconstructed image. To preserve spatial structure, we train our network parameters in the high-pass filtering domain rather than the image domain. We show that the trained network generalizes well to images from different satellites without needing retraining. Experiments show significant improvement over state-of-the-art methods visually and in terms of standard quality metrics.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"50 1\",\"pages\":\"1753-1761\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"427\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PanNet: A Deep Network Architecture for Pan-Sharpening
We propose a deep network architecture for the pan-sharpening problem called PanNet. We incorporate domain-specific knowledge to design our PanNet architecture by focusing on the two aims of the pan-sharpening problem: spectral and spatial preservation. For spectral preservation, we add up-sampled multispectral images to the network output, which directly propagates the spectral information to the reconstructed image. To preserve spatial structure, we train our network parameters in the high-pass filtering domain rather than the image domain. We show that the trained network generalizes well to images from different satellites without needing retraining. Experiments show significant improvement over state-of-the-art methods visually and in terms of standard quality metrics.