PanNet:用于泛锐化的深度网络架构

Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao Ding, J. Paisley
{"title":"PanNet:用于泛锐化的深度网络架构","authors":"Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao Ding, J. Paisley","doi":"10.1109/ICCV.2017.193","DOIUrl":null,"url":null,"abstract":"We propose a deep network architecture for the pan-sharpening problem called PanNet. We incorporate domain-specific knowledge to design our PanNet architecture by focusing on the two aims of the pan-sharpening problem: spectral and spatial preservation. For spectral preservation, we add up-sampled multispectral images to the network output, which directly propagates the spectral information to the reconstructed image. To preserve spatial structure, we train our network parameters in the high-pass filtering domain rather than the image domain. We show that the trained network generalizes well to images from different satellites without needing retraining. Experiments show significant improvement over state-of-the-art methods visually and in terms of standard quality metrics.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"50 1","pages":"1753-1761"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"427","resultStr":"{\"title\":\"PanNet: A Deep Network Architecture for Pan-Sharpening\",\"authors\":\"Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao Ding, J. Paisley\",\"doi\":\"10.1109/ICCV.2017.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a deep network architecture for the pan-sharpening problem called PanNet. We incorporate domain-specific knowledge to design our PanNet architecture by focusing on the two aims of the pan-sharpening problem: spectral and spatial preservation. For spectral preservation, we add up-sampled multispectral images to the network output, which directly propagates the spectral information to the reconstructed image. To preserve spatial structure, we train our network parameters in the high-pass filtering domain rather than the image domain. We show that the trained network generalizes well to images from different satellites without needing retraining. Experiments show significant improvement over state-of-the-art methods visually and in terms of standard quality metrics.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"50 1\",\"pages\":\"1753-1761\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"427\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 427

摘要

我们针对泛锐化问题提出了一种深度网络架构,称为PanNet。我们结合特定领域的知识来设计我们的PanNet架构,重点关注泛锐化问题的两个目标:光谱和空间保存。为了保持光谱,我们将上采样的多光谱图像加入到网络输出中,直接将光谱信息传播到重建图像中。为了保持空间结构,我们在高通滤波域而不是图像域训练网络参数。我们表明,训练后的网络可以很好地泛化来自不同卫星的图像,而无需再训练。实验表明,在视觉上和标准质量度量方面,比最先进的方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PanNet: A Deep Network Architecture for Pan-Sharpening
We propose a deep network architecture for the pan-sharpening problem called PanNet. We incorporate domain-specific knowledge to design our PanNet architecture by focusing on the two aims of the pan-sharpening problem: spectral and spatial preservation. For spectral preservation, we add up-sampled multispectral images to the network output, which directly propagates the spectral information to the reconstructed image. To preserve spatial structure, we train our network parameters in the high-pass filtering domain rather than the image domain. We show that the trained network generalizes well to images from different satellites without needing retraining. Experiments show significant improvement over state-of-the-art methods visually and in terms of standard quality metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信