扰动一阶扫描过程的拓扑性质

Pub Date : 2021-08-01 DOI:10.2478/ausm-2021-0001
Doria Affane, Loubna Boulkemh
{"title":"扰动一阶扫描过程的拓扑性质","authors":"Doria Affane, Loubna Boulkemh","doi":"10.2478/ausm-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider a perturbed sweeping process for a class of subsmooth moving sets. The perturbation is general and takes the form of a sum of a single-valued mapping and a set-valued mapping. In the first result, we study some topological proprieties of the attainable set, the set-valued mapping considered here is upper semi-continuous with convex values. In the second result, we treat the autonomous problem under assumptions that do not require the convexity of the values and that weaken the assumption on the upper semi-continuity. Then, we deduce a solution of the time optimality problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Topological properties for a perturbed first order sweeping process\",\"authors\":\"Doria Affane, Loubna Boulkemh\",\"doi\":\"10.2478/ausm-2021-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider a perturbed sweeping process for a class of subsmooth moving sets. The perturbation is general and takes the form of a sum of a single-valued mapping and a set-valued mapping. In the first result, we study some topological proprieties of the attainable set, the set-valued mapping considered here is upper semi-continuous with convex values. In the second result, we treat the autonomous problem under assumptions that do not require the convexity of the values and that weaken the assumption on the upper semi-continuity. Then, we deduce a solution of the time optimality problem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2021-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文考虑一类亚光滑移动集的摄动扫描过程。摄动是一般的,采用单值映射和集值映射的和的形式。在第一个结果中,我们研究了可得集的一些拓扑性质,这里所考虑的集值映射是凸上半连续的。在第二个结果中,我们在不要求值的凸性的假设下处理自治问题,并且削弱了对上半连续性的假设。然后,我们推导出时间最优性问题的一个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Topological properties for a perturbed first order sweeping process
Abstract In this paper, we consider a perturbed sweeping process for a class of subsmooth moving sets. The perturbation is general and takes the form of a sum of a single-valued mapping and a set-valued mapping. In the first result, we study some topological proprieties of the attainable set, the set-valued mapping considered here is upper semi-continuous with convex values. In the second result, we treat the autonomous problem under assumptions that do not require the convexity of the values and that weaken the assumption on the upper semi-continuity. Then, we deduce a solution of the time optimality problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信