探测一组轨迹以最大化捕获的信息

S. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell, Ojas D. Parekh, C. Phillips
{"title":"探测一组轨迹以最大化捕获的信息","authors":"S. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell, Ojas D. Parekh, C. Phillips","doi":"10.4230/LIPIcs.SEA.2020.5","DOIUrl":null,"url":null,"abstract":"We study a trajectory analysis problem we call the Trajectory Capture Problem (TCP), in which, for a given input set ${\\cal T}$ of trajectories in the plane, and an integer $k\\geq 2$, we seek to compute a set of $k$ points (``portals'') to maximize the total weight of all subtrajectories of ${\\cal T}$ between pairs of portals. This problem naturally arises in trajectory analysis and summarization. \nWe show that the TCP is NP-hard (even in very special cases) and give some first approximation results. Our main focus is on attacking the TCP with practical algorithm-engineering approaches, including integer linear programming (to solve instances to provable optimality) and local search methods. We study the integrality gap arising from such approaches. We analyze our methods on different classes of data, including benchmark instances that we generate. Our goal is to understand the best performing heuristics, based on both solution time and solution quality. We demonstrate that we are able to compute provably optimal solutions for real-world instances.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"89 2 1","pages":"5:1-5:14"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probing a Set of Trajectories to Maximize Captured Information\",\"authors\":\"S. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell, Ojas D. Parekh, C. Phillips\",\"doi\":\"10.4230/LIPIcs.SEA.2020.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a trajectory analysis problem we call the Trajectory Capture Problem (TCP), in which, for a given input set ${\\\\cal T}$ of trajectories in the plane, and an integer $k\\\\geq 2$, we seek to compute a set of $k$ points (``portals'') to maximize the total weight of all subtrajectories of ${\\\\cal T}$ between pairs of portals. This problem naturally arises in trajectory analysis and summarization. \\nWe show that the TCP is NP-hard (even in very special cases) and give some first approximation results. Our main focus is on attacking the TCP with practical algorithm-engineering approaches, including integer linear programming (to solve instances to provable optimality) and local search methods. We study the integrality gap arising from such approaches. We analyze our methods on different classes of data, including benchmark instances that we generate. Our goal is to understand the best performing heuristics, based on both solution time and solution quality. We demonstrate that we are able to compute provably optimal solutions for real-world instances.\",\"PeriodicalId\":9448,\"journal\":{\"name\":\"Bulletin of the Society of Sea Water Science, Japan\",\"volume\":\"89 2 1\",\"pages\":\"5:1-5:14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Society of Sea Water Science, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SEA.2020.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2020.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了一个轨迹分析问题,我们称之为轨迹捕获问题(TCP),其中,对于给定的平面上的轨迹集${\cal T}$和一个整数$k\geq 2$,我们寻求计算一组$k$点(“门户”)以最大化门户对之间${\cal T}$的所有子轨迹的总权重。在轨迹分析和总结中自然会出现这个问题。我们证明了TCP是np困难的(即使在非常特殊的情况下),并给出了一些初步的近似结果。我们的主要重点是用实用的算法工程方法攻击TCP,包括整数线性规划(解决可证明最优性的实例)和本地搜索方法。我们研究了由这些方法引起的完整性缺口。我们在不同类型的数据上分析我们的方法,包括我们生成的基准测试实例。我们的目标是了解基于解决方案时间和解决方案质量的最佳启发式。我们证明了我们能够为现实世界的实例计算可证明的最优解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing a Set of Trajectories to Maximize Captured Information
We study a trajectory analysis problem we call the Trajectory Capture Problem (TCP), in which, for a given input set ${\cal T}$ of trajectories in the plane, and an integer $k\geq 2$, we seek to compute a set of $k$ points (``portals'') to maximize the total weight of all subtrajectories of ${\cal T}$ between pairs of portals. This problem naturally arises in trajectory analysis and summarization. We show that the TCP is NP-hard (even in very special cases) and give some first approximation results. Our main focus is on attacking the TCP with practical algorithm-engineering approaches, including integer linear programming (to solve instances to provable optimality) and local search methods. We study the integrality gap arising from such approaches. We analyze our methods on different classes of data, including benchmark instances that we generate. Our goal is to understand the best performing heuristics, based on both solution time and solution quality. We demonstrate that we are able to compute provably optimal solutions for real-world instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信