利用时空分辨TROPOMI数据识别船舶排放的系统方法

Remote. Sens. Pub Date : 2023-07-07 DOI:10.3390/rs15133453
Juhuhn Kim, M. Emmerich, R. Voors, B. Ording, Jong-Seok Lee
{"title":"利用时空分辨TROPOMI数据识别船舶排放的系统方法","authors":"Juhuhn Kim, M. Emmerich, R. Voors, B. Ording, Jong-Seok Lee","doi":"10.3390/rs15133453","DOIUrl":null,"url":null,"abstract":"Stringent global regulations aim to reduce nitrogen dioxide (NO2) emissions from maritime shipping. However, the lack of a global monitoring system makes compliance verification challenging. To address this issue, we propose a systematic approach to monitor shipping emissions using unsupervised clustering techniques on spatio-temporal georeferenced data, specifically NO2 measurements obtained from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5 Precursor satellite. Our method involves partitioning spatio-temporally resolved measurements based on the similarity of NO2 column levels. We demonstrate the reproducibility of our approach through rigorous testing and validation using data collected from multiple regions and time periods. Our approach improves the spatial correlation coefficients between NO2 column clusters and shipping traffic frequency. Additionally, we identify a temporal correlation between NO2 column levels along shipping routes and the global container throughput index. We expect that our approach may serve as a prototype for a tool to identify anthropogenic maritime emissions, distinguishing them from background sources.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"32 2 1","pages":"3453"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systematic Approach to Identify Shipping Emissions Using Spatio-Temporally Resolved TROPOMI Data\",\"authors\":\"Juhuhn Kim, M. Emmerich, R. Voors, B. Ording, Jong-Seok Lee\",\"doi\":\"10.3390/rs15133453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stringent global regulations aim to reduce nitrogen dioxide (NO2) emissions from maritime shipping. However, the lack of a global monitoring system makes compliance verification challenging. To address this issue, we propose a systematic approach to monitor shipping emissions using unsupervised clustering techniques on spatio-temporal georeferenced data, specifically NO2 measurements obtained from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5 Precursor satellite. Our method involves partitioning spatio-temporally resolved measurements based on the similarity of NO2 column levels. We demonstrate the reproducibility of our approach through rigorous testing and validation using data collected from multiple regions and time periods. Our approach improves the spatial correlation coefficients between NO2 column clusters and shipping traffic frequency. Additionally, we identify a temporal correlation between NO2 column levels along shipping routes and the global container throughput index. We expect that our approach may serve as a prototype for a tool to identify anthropogenic maritime emissions, distinguishing them from background sources.\",\"PeriodicalId\":20944,\"journal\":{\"name\":\"Remote. Sens.\",\"volume\":\"32 2 1\",\"pages\":\"3453\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote. Sens.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/rs15133453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

严格的全球法规旨在减少海上运输的二氧化氮(NO2)排放。然而,由于缺乏全球监测系统,使得合规核查具有挑战性。为了解决这一问题,我们提出了一种系统的方法,利用无监督聚类技术对时空地理参考数据进行监测,特别是从哥白尼哨兵-5前体卫星上的对流层监测仪器(TROPOMI)获得的二氧化氮测量数据。我们的方法包括基于NO2列水平的相似性划分时空分辨测量。我们通过使用从多个地区和时间段收集的数据进行严格的测试和验证,证明了我们方法的可重复性。该方法提高了NO2柱簇与船舶交通频率的空间相关系数。此外,我们确定NO2列水平沿航运路线和全球集装箱吞吐量指数之间的时间相关性。我们期望我们的方法可以作为识别人为海洋排放的工具的原型,将它们与背景源区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systematic Approach to Identify Shipping Emissions Using Spatio-Temporally Resolved TROPOMI Data
Stringent global regulations aim to reduce nitrogen dioxide (NO2) emissions from maritime shipping. However, the lack of a global monitoring system makes compliance verification challenging. To address this issue, we propose a systematic approach to monitor shipping emissions using unsupervised clustering techniques on spatio-temporal georeferenced data, specifically NO2 measurements obtained from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5 Precursor satellite. Our method involves partitioning spatio-temporally resolved measurements based on the similarity of NO2 column levels. We demonstrate the reproducibility of our approach through rigorous testing and validation using data collected from multiple regions and time periods. Our approach improves the spatial correlation coefficients between NO2 column clusters and shipping traffic frequency. Additionally, we identify a temporal correlation between NO2 column levels along shipping routes and the global container throughput index. We expect that our approach may serve as a prototype for a tool to identify anthropogenic maritime emissions, distinguishing them from background sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信