twitter中半监督的目标兴趣事件检测

Ting Hua, F. Chen, Liang Zhao, Chang-Tien Lu, Naren Ramakrishnan
{"title":"twitter中半监督的目标兴趣事件检测","authors":"Ting Hua, F. Chen, Liang Zhao, Chang-Tien Lu, Naren Ramakrishnan","doi":"10.1145/2487575.2487712","DOIUrl":null,"url":null,"abstract":"Social microblogs such as Twitter and Weibo are experiencing an explosive growth with billions of global users sharing their daily observations and thoughts. Beyond public interests (e.g., sports, music), microblogs can provide highly detailed information for those interested in public health, homeland security, and financial analysis. However, the language used in Twitter is heavily informal, ungrammatical, and dynamic. Existing data mining algorithms require extensive manually labeling to build and maintain a supervised system. This paper presents STED, a semi-supervised system that helps users to automatically detect and interactively visualize events of a targeted type from twitter, such as crimes, civil unrests, and disease outbreaks. Our model first applies transfer learning and label propagation to automatically generate labeled data, then learns a customized text classifier based on mini-clustering, and finally applies fast spatial scan statistics to estimate the locations of events. We demonstrate STED's usage and benefits using twitter data collected from Latin America countries, and show how our system helps to detect and track example events such as civil unrests and crimes.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"STED: semi-supervised targeted-interest event detectionin in twitter\",\"authors\":\"Ting Hua, F. Chen, Liang Zhao, Chang-Tien Lu, Naren Ramakrishnan\",\"doi\":\"10.1145/2487575.2487712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social microblogs such as Twitter and Weibo are experiencing an explosive growth with billions of global users sharing their daily observations and thoughts. Beyond public interests (e.g., sports, music), microblogs can provide highly detailed information for those interested in public health, homeland security, and financial analysis. However, the language used in Twitter is heavily informal, ungrammatical, and dynamic. Existing data mining algorithms require extensive manually labeling to build and maintain a supervised system. This paper presents STED, a semi-supervised system that helps users to automatically detect and interactively visualize events of a targeted type from twitter, such as crimes, civil unrests, and disease outbreaks. Our model first applies transfer learning and label propagation to automatically generate labeled data, then learns a customized text classifier based on mini-clustering, and finally applies fast spatial scan statistics to estimate the locations of events. We demonstrate STED's usage and benefits using twitter data collected from Latin America countries, and show how our system helps to detect and track example events such as civil unrests and crimes.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

推特和微博等社交微博正在经历爆炸式增长,全球数十亿用户在分享他们的日常观察和想法。除了公共利益(如体育、音乐)之外,微博还可以为那些对公共卫生、国土安全和财务分析感兴趣的人提供非常详细的信息。然而,Twitter中使用的语言非常不正式,不符合语法,而且是动态的。现有的数据挖掘算法需要大量的人工标记来构建和维护一个受监督的系统。本文介绍了STED,这是一个半监督系统,可以帮助用户自动检测和交互式地可视化来自twitter的目标类型的事件,例如犯罪,内乱和疾病爆发。我们的模型首先采用迁移学习和标签传播来自动生成标记数据,然后学习基于迷你聚类的自定义文本分类器,最后应用快速空间扫描统计来估计事件的位置。我们使用从拉丁美洲国家收集的twitter数据展示了STED的使用和好处,并展示了我们的系统如何帮助检测和跟踪诸如内乱和犯罪等示例事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STED: semi-supervised targeted-interest event detectionin in twitter
Social microblogs such as Twitter and Weibo are experiencing an explosive growth with billions of global users sharing their daily observations and thoughts. Beyond public interests (e.g., sports, music), microblogs can provide highly detailed information for those interested in public health, homeland security, and financial analysis. However, the language used in Twitter is heavily informal, ungrammatical, and dynamic. Existing data mining algorithms require extensive manually labeling to build and maintain a supervised system. This paper presents STED, a semi-supervised system that helps users to automatically detect and interactively visualize events of a targeted type from twitter, such as crimes, civil unrests, and disease outbreaks. Our model first applies transfer learning and label propagation to automatically generate labeled data, then learns a customized text classifier based on mini-clustering, and finally applies fast spatial scan statistics to estimate the locations of events. We demonstrate STED's usage and benefits using twitter data collected from Latin America countries, and show how our system helps to detect and track example events such as civil unrests and crimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信