Jaewoong Sim, G. Loh, Vilas Sridharan, Mike O'Connor
{"title":"弹性叠片DRAM缓存","authors":"Jaewoong Sim, G. Loh, Vilas Sridharan, Mike O'Connor","doi":"10.1145/2485922.2485958","DOIUrl":null,"url":null,"abstract":"Die-stacked DRAM can provide large amounts of in-package, high-bandwidth cache storage. For server and high-performance computing markets, however, such DRAM caches must also provide sufficient support for reliability and fault tolerance. While conventional off-chip memory provides ECC support by adding one or more extra chips, this may not be practical in a 3D stack. In this paper, we present a DRAM cache organization that uses error-correcting codes (ECCs), strong checksums (CRCs), and dirty data duplication to detect and correct a wide range of stacked DRAM failures, from traditional bit errors to large-scale row, column, bank, and channel failures. With only a modest performance degradation compared to a DRAM cache with no ECC support, our proposal can correct all single-bit failures, and 99.9993% of all row, column, and bank failures, providing more than a 54,000x improvement in the FIT rate of silent-data corruptions compared to basic SECDED ECC protection.","PeriodicalId":20555,"journal":{"name":"Proceedings of the 40th Annual International Symposium on Computer Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Resilient die-stacked DRAM caches\",\"authors\":\"Jaewoong Sim, G. Loh, Vilas Sridharan, Mike O'Connor\",\"doi\":\"10.1145/2485922.2485958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Die-stacked DRAM can provide large amounts of in-package, high-bandwidth cache storage. For server and high-performance computing markets, however, such DRAM caches must also provide sufficient support for reliability and fault tolerance. While conventional off-chip memory provides ECC support by adding one or more extra chips, this may not be practical in a 3D stack. In this paper, we present a DRAM cache organization that uses error-correcting codes (ECCs), strong checksums (CRCs), and dirty data duplication to detect and correct a wide range of stacked DRAM failures, from traditional bit errors to large-scale row, column, bank, and channel failures. With only a modest performance degradation compared to a DRAM cache with no ECC support, our proposal can correct all single-bit failures, and 99.9993% of all row, column, and bank failures, providing more than a 54,000x improvement in the FIT rate of silent-data corruptions compared to basic SECDED ECC protection.\",\"PeriodicalId\":20555,\"journal\":{\"name\":\"Proceedings of the 40th Annual International Symposium on Computer Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2485922.2485958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485922.2485958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Die-stacked DRAM can provide large amounts of in-package, high-bandwidth cache storage. For server and high-performance computing markets, however, such DRAM caches must also provide sufficient support for reliability and fault tolerance. While conventional off-chip memory provides ECC support by adding one or more extra chips, this may not be practical in a 3D stack. In this paper, we present a DRAM cache organization that uses error-correcting codes (ECCs), strong checksums (CRCs), and dirty data duplication to detect and correct a wide range of stacked DRAM failures, from traditional bit errors to large-scale row, column, bank, and channel failures. With only a modest performance degradation compared to a DRAM cache with no ECC support, our proposal can correct all single-bit failures, and 99.9993% of all row, column, and bank failures, providing more than a 54,000x improvement in the FIT rate of silent-data corruptions compared to basic SECDED ECC protection.