图的环代数的正则界和线性分辨

Pub Date : 2022-06-01 DOI:10.1216/jca.2022.14.285
Rimpa Nandi, Ramakrishna Nanduri
{"title":"图的环代数的正则界和线性分辨","authors":"Rimpa Nandi, Ramakrishna Nanduri","doi":"10.1216/jca.2022.14.285","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph. In this article we show that if G is connected and R(I(G)) is normal, then reg(R(I(G))) ≤ α0(G), where α0(G) the vertex cover number of G. As a consequence, every normal König connected graph G, reg(R(I(G))) = mat(G), the matching number of G. For a gap-free graph G, we give various combinatorial upper bounds for reg(R(I(G))). As a consequence we give various sufficient conditions for the equality of reg(R(I(G))) and mat(G). Finally we show that if G is a chordal graph such that K[G] has q-linear resolution (q ≥ 4), then K[G] is a hypersurface, which proves the conjecture of Hibi-Matsuda-Tsuchiya [12, Conjecture 0.2], affirmatively for chordal graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On regularity bounds and linear resolutions of toric algebras of graphs\",\"authors\":\"Rimpa Nandi, Ramakrishna Nanduri\",\"doi\":\"10.1216/jca.2022.14.285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simple graph. In this article we show that if G is connected and R(I(G)) is normal, then reg(R(I(G))) ≤ α0(G), where α0(G) the vertex cover number of G. As a consequence, every normal König connected graph G, reg(R(I(G))) = mat(G), the matching number of G. For a gap-free graph G, we give various combinatorial upper bounds for reg(R(I(G))). As a consequence we give various sufficient conditions for the equality of reg(R(I(G))) and mat(G). Finally we show that if G is a chordal graph such that K[G] has q-linear resolution (q ≥ 4), then K[G] is a hypersurface, which proves the conjecture of Hibi-Matsuda-Tsuchiya [12, Conjecture 0.2], affirmatively for chordal graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2022.14.285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设G是一个简单的图。本文证明了如果G是连通的,R(I(G))是正规的,则reg(R(I(G)))≤α0(G),其中α0(G)是G的顶点覆盖数。因此,对于无间隙图G,我们给出了reg(R(I(G)))的各种组合上界,每个正规König连通图G, reg(R(I(G))) = mat(G), G的匹配数。因此,我们给出了reg(R(I(G)))和mat(G)相等的各种充分条件。最后,我们证明了如果G是一个弦图,使得K[G]具有q-线性分辨率(q≥4),则K[G]是一个超曲面,从而肯定地证明了Hibi-Matsuda-Tsuchiya[12,猜想0.2]对于弦图的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On regularity bounds and linear resolutions of toric algebras of graphs
Let G be a simple graph. In this article we show that if G is connected and R(I(G)) is normal, then reg(R(I(G))) ≤ α0(G), where α0(G) the vertex cover number of G. As a consequence, every normal König connected graph G, reg(R(I(G))) = mat(G), the matching number of G. For a gap-free graph G, we give various combinatorial upper bounds for reg(R(I(G))). As a consequence we give various sufficient conditions for the equality of reg(R(I(G))) and mat(G). Finally we show that if G is a chordal graph such that K[G] has q-linear resolution (q ≥ 4), then K[G] is a hypersurface, which proves the conjecture of Hibi-Matsuda-Tsuchiya [12, Conjecture 0.2], affirmatively for chordal graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信