{"title":"通用博弈智能体现有结构的比较分析","authors":"Ionel-Alexandru Hosu, A. Urzica","doi":"10.1109/SYNASC.2015.48","DOIUrl":null,"url":null,"abstract":"This paper addresses the development of general purpose game agents able to learn a vast number of games using the same architecture. The article analyzes the main existing approaches to general game playing, reviews their performance and proposes future research directions. Methods such as deep learning, reinforcement learning and evolutionary algorithms are considered for this problem. The testing platform is the popular video game console Atari 2600. Research into developing general purpose agents for games is closely related to achieving artificial general intelligence (AGI).","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"709 1","pages":"257-260"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Analysis of Existing Architectures for General Game Agents\",\"authors\":\"Ionel-Alexandru Hosu, A. Urzica\",\"doi\":\"10.1109/SYNASC.2015.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the development of general purpose game agents able to learn a vast number of games using the same architecture. The article analyzes the main existing approaches to general game playing, reviews their performance and proposes future research directions. Methods such as deep learning, reinforcement learning and evolutionary algorithms are considered for this problem. The testing platform is the popular video game console Atari 2600. Research into developing general purpose agents for games is closely related to achieving artificial general intelligence (AGI).\",\"PeriodicalId\":6488,\"journal\":{\"name\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"709 1\",\"pages\":\"257-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2015.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Analysis of Existing Architectures for General Game Agents
This paper addresses the development of general purpose game agents able to learn a vast number of games using the same architecture. The article analyzes the main existing approaches to general game playing, reviews their performance and proposes future research directions. Methods such as deep learning, reinforcement learning and evolutionary algorithms are considered for this problem. The testing platform is the popular video game console Atari 2600. Research into developing general purpose agents for games is closely related to achieving artificial general intelligence (AGI).