3D打印磁性颗粒基高分子复合材料的磁滞模型

Z. Xiang, B. Gupta, M. Le, P. Cottinet, B. Ducharne
{"title":"3D打印磁性颗粒基高分子复合材料的磁滞模型","authors":"Z. Xiang, B. Gupta, M. Le, P. Cottinet, B. Ducharne","doi":"10.1109/INTMAG.2018.8508119","DOIUrl":null,"url":null,"abstract":"This paper reports a magnetic lump model of a 3D printed polymer matrix filled with magnetic particles. Due to the intrinsically dielectric nature of the polymer and since the percolation threshold is not reached even for a high percentage of particles, great resistivity is still achieved, confirming a significant limitation of the formation of the so-called “macroscopic” eddy currents. Taking into account this characteristics, the model investigated in this work essentially focuses on “microscopic” eddy currents that is mainly related to the movement of magnetic domain walls. The proposed approach is then validated based on experimental results and finite element method (FEM), followed by simulation/measurement comparisons over a wide excitation frequency band.","PeriodicalId":6571,"journal":{"name":"2018 IEEE International Magnetic Conference (INTERMAG)","volume":"10 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hysteresis Model of 3D Printed Magnetic Particles Based Polymer Composite Materials\",\"authors\":\"Z. Xiang, B. Gupta, M. Le, P. Cottinet, B. Ducharne\",\"doi\":\"10.1109/INTMAG.2018.8508119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a magnetic lump model of a 3D printed polymer matrix filled with magnetic particles. Due to the intrinsically dielectric nature of the polymer and since the percolation threshold is not reached even for a high percentage of particles, great resistivity is still achieved, confirming a significant limitation of the formation of the so-called “macroscopic” eddy currents. Taking into account this characteristics, the model investigated in this work essentially focuses on “microscopic” eddy currents that is mainly related to the movement of magnetic domain walls. The proposed approach is then validated based on experimental results and finite element method (FEM), followed by simulation/measurement comparisons over a wide excitation frequency band.\",\"PeriodicalId\":6571,\"journal\":{\"name\":\"2018 IEEE International Magnetic Conference (INTERMAG)\",\"volume\":\"10 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Magnetic Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTMAG.2018.8508119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Magnetic Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2018.8508119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文报道了一个充满磁性颗粒的3D打印聚合物基质的磁性块模型。由于聚合物固有的介电性质,并且由于即使对于高百分比的颗粒也无法达到渗透阈值,因此仍然可以实现高电阻率,这证实了所谓的“宏观”涡流形成的重大限制。考虑到这一特点,本工作中研究的模型主要关注主要与磁畴壁运动有关的“微观”涡流。然后基于实验结果和有限元法(FEM)验证了所提出的方法,然后在宽激励频段上进行了仿真/测量比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hysteresis Model of 3D Printed Magnetic Particles Based Polymer Composite Materials
This paper reports a magnetic lump model of a 3D printed polymer matrix filled with magnetic particles. Due to the intrinsically dielectric nature of the polymer and since the percolation threshold is not reached even for a high percentage of particles, great resistivity is still achieved, confirming a significant limitation of the formation of the so-called “macroscopic” eddy currents. Taking into account this characteristics, the model investigated in this work essentially focuses on “microscopic” eddy currents that is mainly related to the movement of magnetic domain walls. The proposed approach is then validated based on experimental results and finite element method (FEM), followed by simulation/measurement comparisons over a wide excitation frequency band.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信