Rachid Oubaki, Karima Machkih, H. Larhlimi, O. Abegunde, J. Alami, M. Makha
{"title":"一步DcMS和HiPIMS溅射从第四元靶CIGS薄膜","authors":"Rachid Oubaki, Karima Machkih, H. Larhlimi, O. Abegunde, J. Alami, M. Makha","doi":"10.1002/pssa.202300178","DOIUrl":null,"url":null,"abstract":"Using a quaternary compound target, Cu(In,Ga)Se2 films were prepared using one‐step, selenization‐free Direct Current Magneton Sputtering (DcMS) and High Power Impulse Magnetron Sputtering (HiPIMS) methods. We investigated how the sputtering power affected the composition, microstructure, morphology, and electrical characteristics of the films. Film crystallinity was found to be affected by the sputtering power utilized. The films deposited at 0.25 kW were amorphous, whereas those formed at 0.5–1 kW displayed a chalcopyrite structure with a (112)–preferred orientation. With increased sputtering power, the films’ crystal quality improved, displaying a homogeneous and compact morphology free of peeling and cracking. Elemental measurement of the CIGS films revealed that, depending on the deposition method, the film composition deviated from that of the target. The electrical properties of the deposited films varied with increasing sputtering power.This article is protected by copyright. All rights reserved.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One‐step DcMS and HiPIMS sputtered CIGS films from a quaternary target\",\"authors\":\"Rachid Oubaki, Karima Machkih, H. Larhlimi, O. Abegunde, J. Alami, M. Makha\",\"doi\":\"10.1002/pssa.202300178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a quaternary compound target, Cu(In,Ga)Se2 films were prepared using one‐step, selenization‐free Direct Current Magneton Sputtering (DcMS) and High Power Impulse Magnetron Sputtering (HiPIMS) methods. We investigated how the sputtering power affected the composition, microstructure, morphology, and electrical characteristics of the films. Film crystallinity was found to be affected by the sputtering power utilized. The films deposited at 0.25 kW were amorphous, whereas those formed at 0.5–1 kW displayed a chalcopyrite structure with a (112)–preferred orientation. With increased sputtering power, the films’ crystal quality improved, displaying a homogeneous and compact morphology free of peeling and cracking. Elemental measurement of the CIGS films revealed that, depending on the deposition method, the film composition deviated from that of the target. The electrical properties of the deposited films varied with increasing sputtering power.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":87717,\"journal\":{\"name\":\"Physica status solidi (A): Applied research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica status solidi (A): Applied research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202300178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One‐step DcMS and HiPIMS sputtered CIGS films from a quaternary target
Using a quaternary compound target, Cu(In,Ga)Se2 films were prepared using one‐step, selenization‐free Direct Current Magneton Sputtering (DcMS) and High Power Impulse Magnetron Sputtering (HiPIMS) methods. We investigated how the sputtering power affected the composition, microstructure, morphology, and electrical characteristics of the films. Film crystallinity was found to be affected by the sputtering power utilized. The films deposited at 0.25 kW were amorphous, whereas those formed at 0.5–1 kW displayed a chalcopyrite structure with a (112)–preferred orientation. With increased sputtering power, the films’ crystal quality improved, displaying a homogeneous and compact morphology free of peeling and cracking. Elemental measurement of the CIGS films revealed that, depending on the deposition method, the film composition deviated from that of the target. The electrical properties of the deposited films varied with increasing sputtering power.This article is protected by copyright. All rights reserved.