狄拉克的梳子和贝佐特的刷子

André Unterberger
{"title":"狄拉克的梳子和贝佐特的刷子","authors":"André Unterberger","doi":"10.1016/S0764-4442(01)02134-6","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a distribution on <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span>, invariant under the linear action on <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span> of the group <span><math><mtext>Γ=</mtext><mtext>SL</mtext><mtext>(2,</mtext><mtext>Z</mtext><mtext>)</mtext></math></span>, whose decomposition into homogeneous terms depends on all non-holomorphic modular forms for the group <em>Γ</em>, and which plays a major role in the automorphic Weyl calculus.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 629-634"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02134-6","citationCount":"1","resultStr":"{\"title\":\"Le peigne à Dirac et la brosse à Bezout\",\"authors\":\"André Unterberger\",\"doi\":\"10.1016/S0764-4442(01)02134-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a distribution on <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span>, invariant under the linear action on <span><math><mtext>R</mtext><msup><mi></mi><mn>2</mn></msup></math></span> of the group <span><math><mtext>Γ=</mtext><mtext>SL</mtext><mtext>(2,</mtext><mtext>Z</mtext><mtext>)</mtext></math></span>, whose decomposition into homogeneous terms depends on all non-holomorphic modular forms for the group <em>Γ</em>, and which plays a major role in the automorphic Weyl calculus.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 7\",\"pages\":\"Pages 629-634\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02134-6\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

构造了群Γ=SL(2,Z)在R2上的线性作用下不变的分布,其分解为齐次项依赖于群Γ的所有非全纯模形式,该分布在自同态Weyl演算中起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Le peigne à Dirac et la brosse à Bezout

We construct a distribution on R2, invariant under the linear action on R2 of the group Γ=SL(2,Z), whose decomposition into homogeneous terms depends on all non-holomorphic modular forms for the group Γ, and which plays a major role in the automorphic Weyl calculus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信