为机器学习任务优化压缩成像仪

Brian J. Redman, Daniel Calzada, Jamie Wingo, T. Quach, Meghan A. Galiardi, Amber L. Dagel, C. LaCasse, G. Birch
{"title":"为机器学习任务优化压缩成像仪","authors":"Brian J. Redman, Daniel Calzada, Jamie Wingo, T. Quach, Meghan A. Galiardi, Amber L. Dagel, C. LaCasse, G. Birch","doi":"10.1109/IEEECONF44664.2019.9048763","DOIUrl":null,"url":null,"abstract":"Images are often not the optimal data form to perform machine learning tasks such as scene classification. Compressive classification can reduce the size, weight, and power of a system by selecting the minimum information while maximizing classification accuracy.In this work we present designs and simulations of prism arrays which realize sensing matrices using a monolithic element. The sensing matrix is optimized using a neural network architecture to maximize classification accuracy of the MNIST dataset while considering the blurring caused by the size of each prism. Simulated optical hardware performance for a range of prism sizes are reported.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"26 1","pages":"1000-1004"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing a Compressive Imager for Machine Learning Tasks\",\"authors\":\"Brian J. Redman, Daniel Calzada, Jamie Wingo, T. Quach, Meghan A. Galiardi, Amber L. Dagel, C. LaCasse, G. Birch\",\"doi\":\"10.1109/IEEECONF44664.2019.9048763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images are often not the optimal data form to perform machine learning tasks such as scene classification. Compressive classification can reduce the size, weight, and power of a system by selecting the minimum information while maximizing classification accuracy.In this work we present designs and simulations of prism arrays which realize sensing matrices using a monolithic element. The sensing matrix is optimized using a neural network architecture to maximize classification accuracy of the MNIST dataset while considering the blurring caused by the size of each prism. Simulated optical hardware performance for a range of prism sizes are reported.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"26 1\",\"pages\":\"1000-1004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像通常不是执行机器学习任务(如场景分类)的最佳数据形式。压缩分类可以通过选择最小的信息来减小系统的尺寸、重量和功耗,同时最大限度地提高分类精度。在这项工作中,我们提出了用单片元件实现传感矩阵的棱镜阵列的设计和模拟。利用神经网络架构对传感矩阵进行优化,使MNIST数据集的分类精度最大化,同时考虑到每个棱镜的大小造成的模糊。模拟了不同棱镜尺寸的光学硬件性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing a Compressive Imager for Machine Learning Tasks
Images are often not the optimal data form to perform machine learning tasks such as scene classification. Compressive classification can reduce the size, weight, and power of a system by selecting the minimum information while maximizing classification accuracy.In this work we present designs and simulations of prism arrays which realize sensing matrices using a monolithic element. The sensing matrix is optimized using a neural network architecture to maximize classification accuracy of the MNIST dataset while considering the blurring caused by the size of each prism. Simulated optical hardware performance for a range of prism sizes are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信