广义希尔方程的一个新的振荡判据

G. Grigorian
{"title":"广义希尔方程的一个新的振荡判据","authors":"G. Grigorian","doi":"10.7153/DEA-2017-09-26","DOIUrl":null,"url":null,"abstract":"In this note we use an oscillatory theorem for the second order linear ordinary differential equation in order to establish an oscillatory criterion for the generalized Hill’s equation. We formulate a hypothesis about representation of the sum of periodic functions with rational dependent periods by a sum of periodic functions with rational independent periods.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"22 1","pages":"369-377"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new oscillatory criterion for the generalized Hill's equation\",\"authors\":\"G. Grigorian\",\"doi\":\"10.7153/DEA-2017-09-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we use an oscillatory theorem for the second order linear ordinary differential equation in order to establish an oscillatory criterion for the generalized Hill’s equation. We formulate a hypothesis about representation of the sum of periodic functions with rational dependent periods by a sum of periodic functions with rational independent periods.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"22 1\",\"pages\":\"369-377\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2017-09-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2017-09-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用二阶线性常微分方程的振荡定理,建立了广义希尔方程的振荡判据。我们提出了一个关于有理相关周期函数和用有理无关周期函数和表示的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new oscillatory criterion for the generalized Hill's equation
In this note we use an oscillatory theorem for the second order linear ordinary differential equation in order to establish an oscillatory criterion for the generalized Hill’s equation. We formulate a hypothesis about representation of the sum of periodic functions with rational dependent periods by a sum of periodic functions with rational independent periods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信