S. Roy, S. Kamal, Richard Frazier, Ross Bruns, Yahia Ait Hamlat
{"title":"在线钻井液性能测量,集成和建模,以提高钻井实践和支持钻井自动化","authors":"S. Roy, S. Kamal, Richard Frazier, Ross Bruns, Yahia Ait Hamlat","doi":"10.2118/208064-ms","DOIUrl":null,"url":null,"abstract":"\n Frequent, reliable, and repeatable measurements are key to the evolution of digitization of drilling information and drilling automation. While advances have been made in automating the drilling process and the use of sophisticated engineering models, machine learning techniques to optimize the process, and lack of real-time data on drilling fluid properties has long been recognized as a limiting factor. Drilling fluids play a significant function in ensuring quality well construction and completion, and in-time measurements of relevant fluid properties are key to automation and enhancing decision making that directly impacts well operations.\n This paper discusses the development and application of a suite of automated fluid measurement devices that collect key fluid properties used to monitor fluid performance and drive engineering analyses without human involvement. The deployed skid-mounted devices continually and reliably measure properties such as mud weight, apparent viscosity, rheology profiles, temperatures, and emulsion stability to provide valuable insight on the current state of the fluid. Real-time data is shared with relevant rig and office- based personnel to enable process monitoring and trigger operational changes. It feeds into real-time engineering analyses tools and models to monitor performance and provides instantaneous feedback on downhole fluid behavior and impact on drilling performance based on current drilling and drilling fluid property data. Equipment reliability has been documented and demonstrated on over 30 wells and more than 400 thousand ft of lateral sections in unconventional shale drilling in the US. We will share our experience with measurement, data quality and reliability. We will also share aspects of integrating various data components at disparate time intervals into real-time engineering analyses to show how real-time measurements improve the prediction of well and wellbore integrity in ongoing drilling operations. In addition, we will discuss lessons learned from our experience, further enhancements to broaden the scope, and the integration with operators, service companies and other original equipment manufacturer in the domain to support and enhance the digital drilling ecosystem.","PeriodicalId":10981,"journal":{"name":"Day 4 Thu, November 18, 2021","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inline Drilling Fluid Property Measurement, Integration, and Modeling to Enhance Drilling Practice and Support Drilling Automation\",\"authors\":\"S. Roy, S. Kamal, Richard Frazier, Ross Bruns, Yahia Ait Hamlat\",\"doi\":\"10.2118/208064-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Frequent, reliable, and repeatable measurements are key to the evolution of digitization of drilling information and drilling automation. While advances have been made in automating the drilling process and the use of sophisticated engineering models, machine learning techniques to optimize the process, and lack of real-time data on drilling fluid properties has long been recognized as a limiting factor. Drilling fluids play a significant function in ensuring quality well construction and completion, and in-time measurements of relevant fluid properties are key to automation and enhancing decision making that directly impacts well operations.\\n This paper discusses the development and application of a suite of automated fluid measurement devices that collect key fluid properties used to monitor fluid performance and drive engineering analyses without human involvement. The deployed skid-mounted devices continually and reliably measure properties such as mud weight, apparent viscosity, rheology profiles, temperatures, and emulsion stability to provide valuable insight on the current state of the fluid. Real-time data is shared with relevant rig and office- based personnel to enable process monitoring and trigger operational changes. It feeds into real-time engineering analyses tools and models to monitor performance and provides instantaneous feedback on downhole fluid behavior and impact on drilling performance based on current drilling and drilling fluid property data. Equipment reliability has been documented and demonstrated on over 30 wells and more than 400 thousand ft of lateral sections in unconventional shale drilling in the US. We will share our experience with measurement, data quality and reliability. We will also share aspects of integrating various data components at disparate time intervals into real-time engineering analyses to show how real-time measurements improve the prediction of well and wellbore integrity in ongoing drilling operations. In addition, we will discuss lessons learned from our experience, further enhancements to broaden the scope, and the integration with operators, service companies and other original equipment manufacturer in the domain to support and enhance the digital drilling ecosystem.\",\"PeriodicalId\":10981,\"journal\":{\"name\":\"Day 4 Thu, November 18, 2021\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 18, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208064-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208064-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inline Drilling Fluid Property Measurement, Integration, and Modeling to Enhance Drilling Practice and Support Drilling Automation
Frequent, reliable, and repeatable measurements are key to the evolution of digitization of drilling information and drilling automation. While advances have been made in automating the drilling process and the use of sophisticated engineering models, machine learning techniques to optimize the process, and lack of real-time data on drilling fluid properties has long been recognized as a limiting factor. Drilling fluids play a significant function in ensuring quality well construction and completion, and in-time measurements of relevant fluid properties are key to automation and enhancing decision making that directly impacts well operations.
This paper discusses the development and application of a suite of automated fluid measurement devices that collect key fluid properties used to monitor fluid performance and drive engineering analyses without human involvement. The deployed skid-mounted devices continually and reliably measure properties such as mud weight, apparent viscosity, rheology profiles, temperatures, and emulsion stability to provide valuable insight on the current state of the fluid. Real-time data is shared with relevant rig and office- based personnel to enable process monitoring and trigger operational changes. It feeds into real-time engineering analyses tools and models to monitor performance and provides instantaneous feedback on downhole fluid behavior and impact on drilling performance based on current drilling and drilling fluid property data. Equipment reliability has been documented and demonstrated on over 30 wells and more than 400 thousand ft of lateral sections in unconventional shale drilling in the US. We will share our experience with measurement, data quality and reliability. We will also share aspects of integrating various data components at disparate time intervals into real-time engineering analyses to show how real-time measurements improve the prediction of well and wellbore integrity in ongoing drilling operations. In addition, we will discuss lessons learned from our experience, further enhancements to broaden the scope, and the integration with operators, service companies and other original equipment manufacturer in the domain to support and enhance the digital drilling ecosystem.