一种新型非线性变阻尼装置及其在参数不确定系统中的应用

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Hamed Saber, Farhad S. Samani, F. Pellicano
{"title":"一种新型非线性变阻尼装置及其在参数不确定系统中的应用","authors":"Hamed Saber, Farhad S. Samani, F. Pellicano","doi":"10.1177/14644193221115007","DOIUrl":null,"url":null,"abstract":"This paper deals with the performance of a novel nonlinear viscous dashpot with variable damping. The new proposed dashpot can be utilized in devices for instance dynamic vibration absorbers (DVAs). When the vibration absorber is tuned to the bridge's fundamental frequency, it represents a robust effect in controlling the vibrations of the bridge; however, a DVA is very sensitive to frequency detuning. The proposed nonlinear dashpot can be applied in a passive vibration absorber and upgrades it to a nonlinear variable damping one. Since the parameter of such DVA can be adjusted, it is the so-called nonlinear adjustable DVA. The mentioned dashpot, provides a quadratic nonlinearity for the damping element. The proposed dashpot in this study possesses a simple mechanism, which can handle large range of flow rates of fluid, smoothly without turbulence, in the oil channel. To investigate the effectiveness of an adjustable vibration absorber, a semi-active DVA with variable damping, and stiffness elements is applied on a footbridge; where, the footbridge is experienced variations of the fundamental frequency over time, and is subjected to a walking pedestrian. For the case study in the present study, a vibration reduction of 31% in comparison with the attached traditional passive DVA with constant parameters was achieved. The results show that, by using the proposed nonlinear dashpot, presented in this study, into an attached DVA, the footbridge will experience about 10% more deflection reduction concerning a classical linear DVA.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel nonlinear variable damping device and its application for the systems with uncertain parameters\",\"authors\":\"Hamed Saber, Farhad S. Samani, F. Pellicano\",\"doi\":\"10.1177/14644193221115007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the performance of a novel nonlinear viscous dashpot with variable damping. The new proposed dashpot can be utilized in devices for instance dynamic vibration absorbers (DVAs). When the vibration absorber is tuned to the bridge's fundamental frequency, it represents a robust effect in controlling the vibrations of the bridge; however, a DVA is very sensitive to frequency detuning. The proposed nonlinear dashpot can be applied in a passive vibration absorber and upgrades it to a nonlinear variable damping one. Since the parameter of such DVA can be adjusted, it is the so-called nonlinear adjustable DVA. The mentioned dashpot, provides a quadratic nonlinearity for the damping element. The proposed dashpot in this study possesses a simple mechanism, which can handle large range of flow rates of fluid, smoothly without turbulence, in the oil channel. To investigate the effectiveness of an adjustable vibration absorber, a semi-active DVA with variable damping, and stiffness elements is applied on a footbridge; where, the footbridge is experienced variations of the fundamental frequency over time, and is subjected to a walking pedestrian. For the case study in the present study, a vibration reduction of 31% in comparison with the attached traditional passive DVA with constant parameters was achieved. The results show that, by using the proposed nonlinear dashpot, presented in this study, into an attached DVA, the footbridge will experience about 10% more deflection reduction concerning a classical linear DVA.\",\"PeriodicalId\":54565,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14644193221115007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193221115007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种新型变阻尼非线性粘性阻尼器的性能。新提出的阻尼器可用于动态减振器等设备。当减振器调谐到桥梁的基频时,它在控制桥梁振动方面表现出稳健的效果;然而,DVA对频率失谐非常敏感。所提出的非线性阻尼器可以应用于被动减振器,并将其升级为非线性变阻尼减振器。由于这种DVA的参数是可以调节的,所以称为非线性可调DVA。上述阻尼器为阻尼元件提供了二次非线性。本研究提出的减震器机制简单,能在油道内平稳无湍流地处理大范围的流体流速。为了研究可调减振器的有效性,将具有可变阻尼和刚度单元的半主动DVA应用于人行桥;其中,人行桥经历了基频随时间的变化,并受到步行行人的影响。在本研究的案例研究中,与附加的传统无源DVA恒定参数相比,振动减少了31%。结果表明,将本文提出的非线性阻尼器应用于附加的DVA后,人行桥的挠度将比传统的线性DVA减少10%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel nonlinear variable damping device and its application for the systems with uncertain parameters
This paper deals with the performance of a novel nonlinear viscous dashpot with variable damping. The new proposed dashpot can be utilized in devices for instance dynamic vibration absorbers (DVAs). When the vibration absorber is tuned to the bridge's fundamental frequency, it represents a robust effect in controlling the vibrations of the bridge; however, a DVA is very sensitive to frequency detuning. The proposed nonlinear dashpot can be applied in a passive vibration absorber and upgrades it to a nonlinear variable damping one. Since the parameter of such DVA can be adjusted, it is the so-called nonlinear adjustable DVA. The mentioned dashpot, provides a quadratic nonlinearity for the damping element. The proposed dashpot in this study possesses a simple mechanism, which can handle large range of flow rates of fluid, smoothly without turbulence, in the oil channel. To investigate the effectiveness of an adjustable vibration absorber, a semi-active DVA with variable damping, and stiffness elements is applied on a footbridge; where, the footbridge is experienced variations of the fundamental frequency over time, and is subjected to a walking pedestrian. For the case study in the present study, a vibration reduction of 31% in comparison with the attached traditional passive DVA with constant parameters was achieved. The results show that, by using the proposed nonlinear dashpot, presented in this study, into an attached DVA, the footbridge will experience about 10% more deflection reduction concerning a classical linear DVA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
11.10%
发文量
38
审稿时长
>12 weeks
期刊介绍: The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信