Wajdi Halabi, Daniel N. Smith, J. Hill, Jason W. Anderson, Ken E. Kennedy, Brandon Posey, Linh Ngo, A. Apon
{"title":"Azure物联网中心处理高速大规模物联网数据的可行性","authors":"Wajdi Halabi, Daniel N. Smith, J. Hill, Jason W. Anderson, Ken E. Kennedy, Brandon Posey, Linh Ngo, A. Apon","doi":"10.1145/3447545.3451187","DOIUrl":null,"url":null,"abstract":"We utilize the Clemson supercomputer to generate a massive workload for testing the performance of Microsoft Azure IoT Hub. The workload emulates sensor data from a large manufacturing facility. We study the effects of message frequency, distribution, and size on round-trip latency for different IoT Hub configurations. Significant variation in latency occurs when the system exceeds IoT Hub specifications. The results are predictable and well-behaved for a well-engineered system and can meet soft real-time deadlines.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viability of Azure IoT Hub for Processing High Velocity Large Scale IoT Data\",\"authors\":\"Wajdi Halabi, Daniel N. Smith, J. Hill, Jason W. Anderson, Ken E. Kennedy, Brandon Posey, Linh Ngo, A. Apon\",\"doi\":\"10.1145/3447545.3451187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We utilize the Clemson supercomputer to generate a massive workload for testing the performance of Microsoft Azure IoT Hub. The workload emulates sensor data from a large manufacturing facility. We study the effects of message frequency, distribution, and size on round-trip latency for different IoT Hub configurations. Significant variation in latency occurs when the system exceeds IoT Hub specifications. The results are predictable and well-behaved for a well-engineered system and can meet soft real-time deadlines.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447545.3451187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Viability of Azure IoT Hub for Processing High Velocity Large Scale IoT Data
We utilize the Clemson supercomputer to generate a massive workload for testing the performance of Microsoft Azure IoT Hub. The workload emulates sensor data from a large manufacturing facility. We study the effects of message frequency, distribution, and size on round-trip latency for different IoT Hub configurations. Significant variation in latency occurs when the system exceeds IoT Hub specifications. The results are predictable and well-behaved for a well-engineered system and can meet soft real-time deadlines.