一类演化方程的渐近概周期性

Pub Date : 2015-10-29 DOI:10.4171/ZAA/1549
Rongnian Wang, Qiaomin Xiang, Yong Zhou
{"title":"一类演化方程的渐近概周期性","authors":"Rongnian Wang, Qiaomin Xiang, Yong Zhou","doi":"10.4171/ZAA/1549","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new notion of semi-Lipschitz continuity for the class of asymptotically almost periodic functions and establish new existence theorems for asymptotically almost periodic mild solutions to some semilinear abstract evolution equations upon making some suitable assumptions. As one would expect, the results presented here would generalize and improve some recent results in this area.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Almost Periodicity to Some Evolution Equations\",\"authors\":\"Rongnian Wang, Qiaomin Xiang, Yong Zhou\",\"doi\":\"10.4171/ZAA/1549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new notion of semi-Lipschitz continuity for the class of asymptotically almost periodic functions and establish new existence theorems for asymptotically almost periodic mild solutions to some semilinear abstract evolution equations upon making some suitable assumptions. As one would expect, the results presented here would generalize and improve some recent results in this area.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一类渐近概周期函数的半lipschitz连续性的新概念,并在适当的假设下,建立了一类半线性抽象演化方程渐近概周期温和解的存在性定理。正如人们所期望的那样,这里提出的结果将概括和改进该领域最近的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic Almost Periodicity to Some Evolution Equations
In this paper, we introduce a new notion of semi-Lipschitz continuity for the class of asymptotically almost periodic functions and establish new existence theorems for asymptotically almost periodic mild solutions to some semilinear abstract evolution equations upon making some suitable assumptions. As one would expect, the results presented here would generalize and improve some recent results in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信